BackgroundThis study reports the changing prevalence of ankle (Achilles and plantar) spurs with age, in order to comment on their significance to rheumatologists.Methods1080 lateral ankle radiographs from each of 9 (50 men and 50 women) age cohorts from 2 to 96 years old of patients attending a trauma clinic were examined and spurs classified as small or large.ResultsThe prevalence of both Achilles and plantar spurs in relation to the age categories and sex was variable. Overall, there was 38% of the population who had a spur (Achilles or plantar) and only third (11%) with spurs at both sites (Achilles and plantar). Large spurs were more prevalent in older individuals (40 to 79 years). There were no large plantar spurs in individuals <40 years of age and only 2% for the Achilles. The prevalence of spurs (Achilles and plantar) was significantly higher for woman than men in individuals <50 years of age. There was a notable moderate positive correlation (r = 0.71) between both plantar and Achilles spurs for women <30 years of age but no correlation for men (r = -0.03).ConclusionPlantar and Achilles spurs are highly prevalent in older people and the radiographic appearance of spurs differs between men and women. In individuals < 50 years of age, spur (Achilles and plantar) formation is more common in women than in men. Additionally, there was a notable moderate positive correlation between Achilles and plantar spurs for women <30 years of age.
Articular cartilage damage and subsequent degeneration are a frequent occurrence in synovial joints. Treatment of these lesions is a challenge because this tissue is incapable of quality repair and/or regeneration to its native state. Non-operative treatments endeavour to control symptoms and include anti-inflammatory medications, viscosupplementation, bracing, orthotics and activity modification. Classical surgical techniques for articular cartilage lesions are frequently insufficient in restoring normal anatomy and function and in many cases, it has not been possible to achieve the desired results. Consequently, researchers and clinicians are focusing on alternative methods for cartilage preservation and repair. Recently, cell-based therapy has become a key focus of tissue engineering research to achieve functional replacement of articular cartilage. The present manuscript is a brief review of stem cells and their potential in the treatment of early OA (i.e. articular cartilage pathology) and recent progress in the field.
Regular physical activity has been suggested as having both preventive and therapeutic benefits for individuals with osteoarthritis (OA). However, evidence of whether exercise and which type of exercise constitutes a benefit or a risk in the development and progression of OA remains debatable. This may be due to the evaluation of the effect of physical activity or new disease‐modifying OA drugs which is currently based on radiographic criteria (eg, joint space width) and the lack of correlation with clinical signs and symptoms (eg, pain and loss of function). Moreover, OA typically manifests itself as changes within the joint space and subchondral bone as well as the whole joint structure, including progressive degradation of cartilage, menisci, ligaments, and synovial inflammation. Biomarkers are being developed to quantify joint remodeling and disease progression notably involving the articular cartilage and synovial fluid. The primary purpose of this review was to evaluate the current literature and to provide further insight based on OA biomarkers and the role physical activity plays in the management of OA. Osteoarthritis biomarkers together with radiographic imaging evidence will ideally guide healthcare providers to incorporate exercise recommendations into clinical management and offer patients evidence‐based and individually tailored exercise prescriptions.
The kinetics of reduction of the radical R*, 5-dimethylaminonaphthalene-1-sulfonyl-4-amino-2,2,6,6-tetramethyl-1-piperidine-oxyl by blood and its components were studied using the EPR technique. The results demonstrate that R* is adsorbed to the outer surface of the membrane and does not penetrate into the erythrocytes. A series of control experiments in PBS demonstrate that ascorbate is the only natural reducing agent that reacts with R*. The observed first order rate of disappearance of the nitroxide radical k, is: k(blood) > k(eryth) > k(plasma) and k(blood) approximately = k(eryth) + k(plasma). The results demonstrate that: a. The erythrocytes catalyze the reduction of R* by ascorbate. b. The rate of reduction of the radical is high though it does not penetrate the cells. c. In human erythrocytes there is an efficient electron transfer route through the cell membrane. d. The study points out that R* is a suitable spin label for measuring the reduction kinetics and antioxidant capacity in blood as expressed by reduction by ascorbate.
Osteoarthritis (OA) is a complex degenerative disease in which joint homeostasis is disrupted, leading to synovial inflammation, cartilage degradation, subchondral bone remodeling, and resulting in pain and joint disability. Yet, the development of new treatment strategies to restore the equilibrium of the osteoarthritic joint remains a challenge. Numerous studies have revealed that dietary components and/or natural products have anti-inflammatory, antioxidant, anti-bone-resorption, and anabolic potential and have received much attention toward the development of new therapeutic strategies for OA treatment. In the present review, we provide an overview of current and emerging natural-product-based research treatments for OA management by drawing attention to experimental, pre-clinical, and clinical models. Herein, we review current and emerging natural-product-based research treatments for OA management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.