The mechanisms underlying the cytotoxic action of pure fullerene suspension (nano-C60) and water-soluble polyhydroxylated fullerene [C60(OH)n] were investigated. Crystal violet assay for cell viability demonstrated that nano-C60 was at least three orders of magnitude more toxic than C60(OH)n to mouse L929 fibrosarcoma, rat C6 glioma, and U251 human glioma cell lines. Flow cytometry analysis of cells stained with propidium iodide (PI), PI/annexin V-fluorescein isothiocyanate, or the redox-sensitive dye dihydrorhodamine revealed that nano-C60 caused rapid (observable after few hours), reactive oxygen species (ROS)-associated necrosis characterized by cell membrane damage without DNA fragmentation. In contrast, C60(OH)n caused delayed, ROS-independent cell death with characteristics of apoptosis, including DNA fragmentation and loss of cell membrane asymmetry in the absence of increased permeability. Accordingly, the antioxidant N-acetylcysteine protected the cell lines from nano-C60 toxicity, but not C60(OH)n toxicity, while the pan-caspase inhibitor z-VAD-fmk blocked C60(OH)n-induced apoptosis, but not nano-C60-mediated necrosis. Finally, C60(OH)n antagonized, while nano-C60 synergized with, the cytotoxic action of oxidative stress-inducing agents hydrogen peroxide and peroxynitrite donor 3-morpholinosydnonimine. Therefore, unlike polyhydroxylated C60 that exerts mainly antioxidant/cytoprotective and only mild ROS-independent pro-apoptotic activity, pure crystalline C60 seems to be endowed with strong pro-oxidant capacity responsible for the rapid necrotic cell death.
Development of a complex based on iron oxide nanoparticles (IONPs) for diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy accomplishing high yields of radiolabeling and great magnetic heat induction is still a challenge. We report here the synthesis of citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) coated IONPs and their labeling with three radionuclides, namely, technetium (99mTc), yttrium (90Y), and lutetium (177Lu), aiming at potential use in cancer diagnosis and therapy. Polyol-synthesized IONPs are a flowerlike structure with 13.5 nm spherically shaped cores and 24.8 nm diameter. PAA-coated nanoparticles (PAA@IONP) showed the best characteristics such as easy radiolabeling with very high yields (>97.5%) with all three radionuclides, and excellent in vitro stabilities with less than 10% of radionuclides detaching after 24 h. Heating ability of PAA@IONP in an alternating external magnetic field showed intrinsic loss power value of 7.3 nH m2/kg, which is one of higher reported values. Additionally, PAA@IONP itself presented no significant cytotoxicity to the CT-26 cancer cells, reaching IC50 at 60 μg/mL. However, under the external magnetic field, they show hyperthermia-mediated cells killing, which correlated with the magnetic field strength and time of exposure. Since PAA@IONP are easy to prepare, biocompatible, and with excellent magnetic heat induction, these nanoparticles radiolabeled with high-energy beta emitters 90Y and 177Lu have valuable potential as agent for dual magnetic hyperthermia/radionuclide therapy, while radiolabeled with 99mTc could be used in diagnostic imaging.
Two different types of magnetic nanoparticles (MNPs) were synthesized in order to compare their efficiency as radioactive vectors, Fe₃O₄-Naked (80 ± 5 nm) and polyethylene glycol 600 diacid functionalized Fe₃O₄(Fe₃O₄-PEG600) MNPs (46 ± 0.6 nm). They were characterized based on the external morphology, size distribution, and colloidal and magnetic properties. The obtained specific power absorption value for Fe₃O₄-PEG600 MNPs was 200 W/g, indicated their potential in hyperthermia based cancer treatments. The labeling yield, in vitro stability and in vivo biodistribution profile of (90) Y-MNPs were compared. Both types of MNPs were (90)Y-labeled in reproducible high yield (>97%). The stability of the obtained radioactive nanoparticles was evaluated in saline and human serum media in order to optimize the formulations for in vivo use. The biodistribution in Wistar rats showed different pharmacokinetic behaviors of nanoparticles: a large fraction of both injected MNPs ended in the liver (14.58%ID/g for (90)Y-Fe₃O₄-Naked MNPs and 19.61%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) whereas minor fractions attained in other organs. The main difference between the two types of MNPs was the higher accumulation of (90)Y-Fe₃O₄-Naked MNPs in the lungs (12.14%ID/g vs. 2.00%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) due to their in vivo agglomeration. The studied radiolabeled magnetic complexes such as (90)Y-Fe₃O₄-PEG600 MNPs constitute a great promise for multiple diagnostic-therapeutic uses combining, for example, MRI-magnetic hyperthermia and regional radiotherapy.
The present study describes for the first time a procedure for the radiolabeling of fullerene (C(60)) nanocrystals (nanoC(60)) with Na (125)I, as well as the biodistribution of radiolabeled nanoC(60) ((125)I-nanoC(60)). The solvent exchange method with tetrahydrofuran was used to make colloidal water suspensions of radiolabeled nanoC(60) particles. The radiolabeling procedure with the addition of Na (125)I to tetrahydrofuran during dissolution of C(60) gave a higher radiochemical yield of radiolabeled nanoC(60) particles in comparison to the second option, in which Na (125)I was added after C(60) was dissolved. Using photon correlation spectroscopy and transmission electron microscopy, (125)I-nanoC(60) particles were found to have a crystalline structure and a mean diameter of 200-250 nm. The (125)I-nanoC(60) had a particularly high affinity for human serum albumin, displaying 95% binding efficiency after 1 h. Biodistribution studies of (125)I-nanoC(60) in rats indicated significant differences in tissue accumulation of (125)I-nanoC(60) and the radioactive tracer Na (125)I. The higher accumulation of radiolabeled nanoC(60) was observed in liver and spleen, while accumulation in thyroid, stomach, lungs and intestines was significantly lower in comparison to Na (125)I. In addition to being useful for testing the biological distribution of nanoC(60), the described radiolabeling procedure might have possible applications in cancer radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.