Glioblastoma (GBM), as the most aggressive brain tumor, displays a high expression of Src tyrosine kinase, which is involved in the survival, migration, and invasiveness of tumor cells. Thus, Src emerged as a potential target for GBM therapy. The effects of Src inhibitors pyrazolo[3,4-d]pyrimidines, Si306 and its prodrug pro-Si306 were investigated in human GBM cell lines (U87 and U87-TxR) and three primary GBM cell cultures. Primary GBM cells were more resistant to Si306 and pro-Si306 according to the 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. However, the ability of all GBM cells to degrade the extracellular matrix was considerably compromised after Si306 and pro-Si306 applications. Besides reducing the phosphorylation of Src and its downstream signaling pathway components, both compounds decreased the phosphorylated form of focal adhesion kinase (FAK) and epidermal growth factor receptor (EGFR) expression, showing the potential to suppress the aggressiveness of GBM. In vivo, Si306 and pro-Si306 displayed an anti-invasive effect against U87 xenografts in the zebrafish embryo model. Considering that Si306 and pro-Si306 are able to cross the blood–brain barrier and suppress the spread of GBM cells, we anticipate their clinical testing in the near future. Moreover, the prodrug showed similar efficacy to the drug, implying the rationality of its use in clinical settings.
Background: Glioblastoma (GBM) highly expresses Src tyrosine kinase involved in survival, proliferation, angiogenesis and invasiveness of tumor cells. Src activation also reduces reactive oxygen species (ROS) generation, whereas Src inhibitors are able to increase cellular ROS levels. Methods: Pro-oxidative effects of two pyrazolo[3,4-d]pyrimidine derivatives—Src tyrosine kinase inhibitors, Si306 and its prodrug pro-Si306—were investigated in human GBM cells U87 and patient-derived GBM-6. ROS production and changes in mitochondrial membrane potential were assessed by flow cytometry. The expression levels of superoxide dismutase 1 (SOD1) and 2 (SOD2) were studied by Western blot. DNA damage, cell death induction and senescence were also examined in GBM-6 cells. Results: Si306 and pro-Si306 more prominently triggered ROS production and expression of antioxidant enzymes in primary GBM cells. These effects were followed by mitochondrial membrane potential disruption, double-strand DNA breaks and senescence that eventually led to necrosis. Conclusion: Src kinase inhibitors, Si306 and pro-Si306, showed significant pro-oxidative potential in patient-derived GBM cells. This feature contributes to the already demonstrated anti-glioblastoma properties of these compounds in vitro and in vivo and encourages clinical investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.