A new approach to the protection against infections caused by bacteria and various viruses, including SARS-CoV-2 is described. In concrete example, protective filters and ALBO nanosilver masks showed extraordinary efficiency in protection against Staphylococcus aureus. These results show that it highly overcomes the efficiency of ordinary surgical masks. Besides, systematic meta-analysis given for ordinary surgical masks and filters N95 for masks and respirators, showed no statistical difference between them in the case of SARS-CoV-2. On the base our experimental data and systemic meta-analysis given in this paper, it can be concluded that ALBO nanosilver masks have significant advantages, and show a very perspective concept of developing new protective gear.
Swirl burners are the most common type of device in wide range of applications, including gas turbine combustors. Due to their characteristics, swirl flows are extensively used in combustion systems because they enable high energy conversion in small volume with good stabilization behavior over the wide operating range. The flow and mixing process generated by the swirl afford excellent flame stability and reduced NOx emissions. Experimental investigation of NOx emission of a purposely designed micro turbine gas burner with pilot burner is presented. Both burners are equipped with swirlers. Mixtures of air and fuel are introduced separately: through the inner swirler - primary mixture for pilot burner, and through the outer swirler - secondary mixture for main burner. The effects of swirl number variations for the both burners were investigated, including parametric variations of the thermal power and air coefficient. It was found that the outer swirler affects the emission of NOx only for the air coefficient less than 1.4. The increase of swirl number resulted in decrease of NOx emission. The inner swirler and thermal power were found to have negligible effect on emission
The goal of this study was to examine the prevalence of WNT10A and RUNX2 mutations and assess their potential impact on the phenotype of non-syndromic tooth agenesis. The study included 30 participants with non-syndromic tooth agenesis, divided into hypodontia (n = 24) and oligodontia forms (n = 6), and 42 unaffected family members. Genomic DNA from buccal epithelial cells was used for polymerase chain reaction amplification of functionally important exons of the WNT10A and RUNX2 genes. Direct sequencing reactions were performed to confirm the presence of mutations. The trend of increasing prevalence of WNT10A mutations and a slight increase in the prevalence of RUNX2 mutations were revealed in tooth agenesis cases compared to unaffected family members. There was a higher prevalence of hypodontia than oligodontia, increased frequency of females over males with missing teeth, and a wide phenotypic variability was observed in individuals and families analyzed. The common missense mutations (p.Phe228Ile, p.Arg113Cys, p.Asp217Asn, and p.Gly165Arg) and c.114-56T>C in the WNT10A gene and inframe-deletion/insertions (11A, 24Q, 30Q), synonymous variant c.240G>A, and 424-33dupC in the RUNX2 gene were identified. These findings highlight an important role of WNT10A and RUNX2 mutations in the genetic etiology of non-syndromic tooth agenesis.
In this paper viruses are considered as very efficient nano-machines that produce numerous copies of them. Observing these nano-architectures, the question arises: which molecular forces and processes make up the set of such structures, given that they are extremely inspiring for development of new technologies at the nano level. There is a need for deep understanding of individual molecular building blocks and their structures, properties of their assemblies and dynamic behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.