The aim of the study was to test the interaction between Thr and Gly in low crude protein (CP) diets in 7 to 28 d broilers on production performance and plasma metabolites. A total of 2,040 broilers were allocated to 17 treatments. A positive control (PC) diet (20.5% CP) was formulated to be adequate in dietary Thr and Gly. A negative control (NC) diet (18.5% CP, deficient in Thr and Gly) was supplemented with crystalline
l
-Thr and Gly to obtain a 4 Thr × 4 Gly design. Dietary Thr was tested at an apparent faecal digestibility (AFD) Thr-to-Lys ratio, which was 55%, 58%, 61% or 64%, and dietary Gly was tested at an AFD (Gly + Ser)-to-Lys ratio, which was 135%, 142%, 149% or 156%. Plasma samples were collected at 28 d. The low CP diet, formulated at 64% Thr and 156% Gly, resulted in a higher body weight gain (BWG) (
P
< 0.01) and similar feed conversion ratio (FCR) as the high CP treatment (PC). FCR was improved (P < 0.001) by
l
-Thr supplementation. Quadratic response to dietary Thr was significant for feed intake (FI), BWG and FCR (
P
< 0.01). A near-significant interaction for Thr × Gly was observed for FI and BWG (
P
linear
= 0.091 and
P
= 0.074, respectively). Gly did not affect production performance. An interaction between Thr × Gly on plasma free AA level was observed (
P
< 0.05). Free AA concentration in plasma linearly decreased with increase in AFD Thr-to-Lys ratio, and increased with increase in AFD (Gly + Ser)-to-Lys ratio. Plasma uric acid concentration was higher in PC than in all of the other diets, and plasma triglyceride concentration was decreased by
l
-Thr supplementation, but not by Gly. In conclusion, Gly was not limiting for growth at low dietary CP level unless Thr was deficient, showing that adequate amounts of Thr in broiler diets can overcome marginal supply of Gly and Ser and allow reduction of dietary CP from 20.5% to 18.5% for broilers from 7 to 28 d of age.
It was hypothesised that the inclusion of nitrate (NO3–) or cysteamine hydrochloride (CSH) in a protein deficient diet (4.8% crude protein; CP) would improve the productivity of sheep while reducing enteric methane (CH4) emissions. A complete randomised designed experiment was conducted with yearling Merino sheep (n = 24) consuming a protein-deficient wheaten chaff control diet (CON) alone or supplemented with 1.8% nitrate (NO3–; DM basis), 0.098% urea (Ur, DM basis) or 80 mg cysteamine hydrochloride/kg liveweight (CSH). Feed intake, CH4 emissions, volatile fatty acids (VFA), digesta kinetics and NO3–, nitrite (NO2–) and urea concentrations in plasma, saliva and urine samples were measured. There was no dietary effect on animal performance or digesta kinetics (P > 0.05), but adding NO3– to the CON diet reduced methane yield (MY) by 26% (P = 0.01). Nitrate supplementation increased blood MetHb, plasma NO3– and NO2– concentrations (P < 0.05), but there was no indication of NO2– toxicity. Overall, salivary NO3– concentration was greater than plasma NO3– (P < 0.05), indicating that NO3– was concentrated into saliva. Our results confirm the role of NO3– as an effective additive to reduce CH4 emissions, even in a highly protein-deficient diet and as a source of additional nitrogen (N) for microbial protein synthesis via N-recycling into saliva and the gut. The role of CSH as an additive in low quality diets for improving animal performance and reducing CH4 emissions is still unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.