Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose via the Embden-Meyerhof pathway of glycolysis, while galactose is fermented via the Leloir pathway. Construction of yeast strains that efficiently convert other potentially fermentable substrates in plant biomass hydrolysates into ethanol is a major challenge in metabolic engineering. The most abundant of these compounds is xylose. Recent metabolic and evolutionary engineering studies on S. cerevisiae strains that express a fungal xylose isomerase have enabled the rapid and efficient anaerobic fermentation of this pentose.L-Arabinose fermentation, based on the expression of a prokaryotic pathway in S. cerevisiae, has also been established, but needs further optimization before it can be considered for industrial implementation. In addition to these already investigated strategies, possible approaches for metabolic engineering of galacturonic acid and rhamnose fermentation by S. cerevisiae are discussed. An emerging and major challenge is to achieve the rapid transition from proof-of-principle experiments under 'academic' conditions (synthetic media, single substrates or simple substrate mixtures, absence of toxic inhibitors) towards efficient conversion of complex industrial substrate mixtures that contain synergistically acting inhibitors.
In Saccharomyces cerevisiae, the NDI1 gene encodes a mitochondrial NADH dehydrogenase, the catalytic side of which projects to the matrix side of the inner mitochondrial membrane. In addition to this NADH dehydrogenase, S. cerevisiae exhibits another mitochondrial NADH-dehydrogenase activity, which oxidizes NADH at the cytosolic side of the inner membrane. To investigate whether open reading frames YMR145c/NDE1 and YDL 085w/NDE2, which exhibit sequence similarity with NDI1, encode the latter enzyme, NADH-dependent mitochondrial respiration was assayed in wild-type S. cerevisiae and nde deletion mutants. Mitochondria were isolated from aerobic, glucose-limited chemostat cultures grown at a dilution rate (D) of 0.10 h ؊1 , in which reoxidation of cytosolic NADH by wild-type cells occurred exclusively by respiration. Compared with the wild type, rates of mitochondrial NADH oxidation were about 3-fold reduced in an nde1⌬ mutant and unaffected in an nde2⌬ mutant. NADH-dependent mitochondrial respiration was completely abolished in an nde1⌬ nde2⌬ double mutant. Mitochondrial respiration of substrates other than NADH was not affected in nde mutants. In shake flasks, an nde1⌬ nde2⌬ mutant exhibited reduced specific growth rates on ethanol and galactose but not on glucose. Glucose metabolism in aerobic, glucose-limited chemostat cultures (D ؍ 0.10 h ؊1 ) of an nde1⌬ nde2⌬ mutant was essentially respiratory. Apparently, under these conditions alternative systems for reoxidation of cytosolic NADH could replace the role of Nde1p and Nde2p in S. cerevisiae.
Saccharomyces cerevisiae CEN.PK 113-7D is widely used for metabolic engineering and systems biology research in industry and academia. We sequenced, assembled, annotated and analyzed its genome. Single-nucleotide variations (SNV), insertions/deletions (indels) and differences in genome organization compared to the reference strain S. cerevisiae S288C were analyzed. In addition to a few large deletions and duplications, nearly 3000 indels were identified in the CEN.PK113-7D genome relative to S288C. These differences were overrepresented in genes whose functions are related to transcriptional regulation and chromatin remodelling. Some of these variations were caused by unstable tandem repeats, suggesting an innate evolvability of the corresponding genes. Besides a previously characterized mutation in adenylate cyclase, the CEN.PK113-7D genome sequence revealed a significant enrichment of non-synonymous mutations in genes encoding for components of the cAMP signalling pathway. Some phenotypic characteristics of the CEN.PK113-7D strains were explained by the presence of additional specific metabolic genes relative to S288C. In particular, the presence of the BIO1 and BIO6 genes correlated with a biotin prototrophy of CEN.PK113-7D. Furthermore, the copy number, chromosomal location and sequences of the MAL loci were resolved. The assembled sequence reveals that CEN.PK113-7D has a mosaic genome that combines characteristics of laboratory strains and wild-industrial strains.
The kinetics of glucose transport and the transcription of all 20 members of the HXT hexose transporter gene family were studied in relation to the steady state in situ carbon metabolism of Saccharomyces cerevisiae CEN.PK113-7D grown in chemostat cultures. Cells were cultivated at a dilution rate of 0.10 h ؊1 under various nutrient-limited conditions (anaerobically glucose-or nitrogen-limited or aerobically glucose-, galactose-, fructose-, ethanol-, or nitrogen-limited), or at dilution rates ranging between 0.05 and 0.38 h ؊1 in aerobic glucose-limited cultures. Transcription of HXT1-HXT7 was correlated with the extracellular glucose concentration in the cultures. Transcription of GAL2, encoding the galactose transporter, was only detected in galactoselimited cultures. SNF3 and RGT2, two members of the HXT family that encode glucose sensors, were transcribed at low levels. HXT8 -HXT17 transcripts were detected at very low levels. A consistent relationship was observed between the expression of individual HXT genes and the glucose transport kinetics determined from zero-trans influx of 14 C-glucose during 5 s. This relationship was in broad agreement with the transport kinetics of Hxt1-Hxt7 and Gal2 deduced in previous studies on single-HXT strains. At lower dilution rates the glucose transport capacity estimated from zerotrans influx experiments and the residual glucose concentration exceeded the measured in situ glucose consumption rate. At high dilution rates, however, the estimated glucose transport capacity was too low to account for the in situ glucose consumption rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.