Direct additive manufacturing (AM) of sensors has in recent years become possible, but still remains a largely unexplored area. This work proposes a novel resistive sensor design that utilizes the geometric freedom offered by AM, especially by material extrusion, to enable a customizable and amplified response to force and deformation. This is achieved by using a multi-material design made of an elastomer and an electrically conductive polymer that enables a physical shortening of the conductive path under compressive load through a specific definition of shape. A number of different variants of this novel sensor design are tested, measuring their mechanical and electrical behavior under compression. The results of these tests confirm a strong resistive response to mechanical loading. Furthermore, the results provide insight into the influencing factors of the design, i.e., the gap size between the conductive pathing and the stiffness of the sense element support structure are found to be primary influencing factors governing sensor behavior.
The current work experimentally determined how the initial resistance and gauge factor in additively manufactured piezoresistive sensors are affected by the material, design, and process parameters. This was achieved through the tensile testing of sensors manufactured with different infill angles, layer heights, and sensor thicknesses using two conductive polymer composites. Linear regression models were then used to analyze which of the input parameters had significant effects on the sensor properties and which interaction effects existed. The findings demonstrated that the initial resistance in both materials was strongly dependent on the sensor geometry, decreasing as the cross-sectional area was increased. The resistance was also significantly influenced by the layer height and the infill angle, with the best variants achieving a resistance that was, on average, 22.3% to 66.5% lower than less-favorable combinations, depending on the material. The gauge factor was most significantly affected by the infill angle and, depending on the material, by the layer height. Of particular interest was the finding that increasing in the infill angle resulted in an increase in the sensitivity that outweighed the associated increase in the initial resistance, thereby improving the gauge factor by 30.7% to 114.6%, depending on the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.