Abstract. The DRAT-trim tool is a satisfiability proof checker based on the new DRAT proof format. Unlike its predecessor, DRUP-trim, all presently known SAT solving and preprocessing techniques can be validated using DRAT-trim. Checking time of a proof is comparable to the running time of the proof-producing solver. Memory usage is also similar to solving memory consumption, which overcomes a major hurdle of resolution-based proof checkers. The DRAT-trim tool can emit trimmed formulas, optimized proofs, and new TraceCheck + dependency graphs. We describe the output that is produced, what optimizations have been made to check RAT clauses, and potential applications of the tool.
Abstract. The boolean Pythagorean Triples problem has been a longstanding open problem in Ramsey Theory: Can the set N = {1, 2, . . . } of natural numbers be divided into two parts, such that no part contains a triple (a, b, c) with a 2 + b 2 = c 2 ? A prize for the solution was offered by Ronald Graham over two decades ago. We solve this problem, proving in fact the impossibility, by using the Cube-and-Conquer paradigm, a hybrid SAT method for hard problems, employing both look-ahead and CDCL solvers. An important role is played by dedicated look-ahead heuristics, which indeed allowed to solve the problem on a cluster with 800 cores in about 2 days. Due to the general interest in this mathematical problem, our result requires a formal proof. Exploiting recent progress in unsatisfiability proofs of SAT solvers, we produced and verified a proof in the DRAT format, which is almost 200 terabytes in size. From this we extracted and made available a compressed certificate of 68 gigabytes, that allows anyone to reconstruct the DRAT proof for checking.
Abstract. Boolean satisfiability (SAT) and its extensions are becoming a core technology for the analysis of systems. The SAT-based approach divides into three steps: encoding, preprocessing, and search. It is often argued that by encoding arbitrary Boolean formulas in conjunctive normal form (CNF), structural properties of the original problem are not reflected in the CNF. This should result in the fact that CNF-level preprocessing and SAT solver techniques have an inherent disadvantagecompared to related techniques applicable on the level of more structural SAT instance representations such as Boolean circuits. In this work we study the effect of a CNF-level simplification technique called blocked clause elimination (BCE). We show that BCE is surprisingly effective both in theory and in practice on CNFs resulting from a standard CNF encoding for circuits: without explicit knowledge of the underlying circuit structure, it achieves the same level of simplification as a combination of circuit-level simplifications and previously suggested polarity-based CNF encodings. Experimentally, we show that by applying BCE in preprocessing, further formula reduction and faster solving can be achieved, giving promise for applying BCE to speed up solvers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.