Dynamics in complexes of porphyrin cage compounds and viologen-derived guest molecules are investigated by selective exchange NMR spectroscopy (1D EXSY). Exchange rates were found to be independent of excess guest concentration, revealing a dissociative exchange mechanism, which is accompanied by negative activation entropies, indicating significant reorganization of the host-guest complex during dissociation. Nonsymmetric viologen guests with bulky head groups had more unidirectional binding and slower exchange rates than guests with less-bulky head groups. Thermodynamic and kinetic studies revealed that the exchange process is primarily driven by the thermodynamics of binding and that guest binding can be influenced by introducing steric and electronic groups on the host. Exchange studies with guests bearing a polymer chain revealed that both slippage and full dissociation takes place and the rate constants for both processes were determined. The slippage rate constant revealed that for smaller guests exchange takes place nearly exclusively under thermodynamic control.
Dynamics in complexes of porphyrin cage compounds and viologen-derived guest molecules are investigated by selective exchange NMR spectroscopy (1D EXSY). Exchange rates were found to be independent of excess guest concentration, revealing a dissociative exchange mechanism, which is accompanied by negative activation entropies, indicating significant reorganization of the host-guest complex during dissociation. Nonsymmetric viologen guests with bulky head groups had more unidirectional binding and slower exchange rates than guests with less-bulky head groups. Thermodynamic and kinetic studies revealed that the exchange process is primarily driven by the thermodynamics of binding and that guest binding can be influenced by introducing steric and electronic groups on the host . Exchange studies with guests bearing a polymer chain revealed that both slippage and full dissociation takes place and the rate constants for both processes were determined. The slippage rate constant revealed that for smaller guests exchange takes place nearly exclusively under thermodynamic control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.