Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants’ cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants’ cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli –which was most salient during the metronome condition– helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner’s cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory-motor synchronization helps to optimize running economy.
Effects of increased N deposition, caused by agricultural practices and combustion of fossil fuels in traffic and industry, have been studied in detail for soil and water chemistry as well as for vegetation and ecosystem functioning. Knowledge on fauna is limited to descriptive and correlative data for a small number of species or communities. Therefore, mechanisms behind effects of N deposition on animal species and diversity remain unclear, which hampers optimisation of nature restoration and conservation measures. The aim of this review is to identify and structure possible different pathways in which fauna is affected by high N deposition. We identify ten pathways leading to six basic potentially negative bottlenecks: (1) chemical stress, (2) a levelled and humid microclimate, (3) decrease in reproductive habitat, (4) changes in food plant quantity, (5) changes in nutritional quality of food plants and (6) changes in availability of prey or host species due to cumulative effects in the food web. Depending on species and habitat type, different pathways play a dominant role and interference between different pathways can strengthen or weaken the net effect of N deposition. Although all identified pathways and bottlenecks are supported by peer reviewed literature, we conclude that scientific evidence on the causal relationship between increased N deposition and effects on fauna in the complete causal chain is still insufficient. We recommend that future research should aim to clarify the causal mechanisms underlying the observed changes in species composition attributed to N deposition. The most severe gaps in knowledge concern subtle changes in plant chemistry and changes in availability of prey and host species to higher trophic levels.
Encroachment of tall grasses and shrubs in coastal dunes has resulted in loss of vegetation heterogeneity. This is expected to have negative effects on animal diversity. To counteract encroachment and develop structural heterogeneity grazing is a widely used management practice. Here, we aim to functionally interpret changes in vegetation composition and configuration following grazing management on habitat suitability for sand lizards. Aerial photographs taken over a period of 16 years were used to quantify changes in vegetation composition. A GISbased method was developed to calculate habitat suitability for sand lizards in a spatially explicit manner, encompassing differences in vegetation structure and patch size. Coast Conserv (2012) 16:89-99 DOI 10.1007 different scale levels to fully capture the natural landscape dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.