Regional climate models (RCMs) have a high computational cost due to their higher spatial resolution compared to global climate models (GCMs). Therefore, various downscaling approaches have been developed as a surrogate for the dynamical downscaling of GCMs. This study assesses the potential of using a cost-efficient machine learning alternative to dynamical downscaling by using the example case study of emulating surface mass balance (SMB) over the Antarctic Peninsula. More specifically, we determine the impact of the training framework by comparing two training scenarios: (1) a perfect and (2) an imperfect model framework. In the perfect model framework, the RCM-emulator learns only the downscaling function, similar to classical super-resolution approaches; therefore, it was trained with upscaled RCM features at GCM resolution. This emulator accurately reproduced SMB when evaluated on upscaled RCM features (mean RMSE of 0.27 mm w.e./day), but its predictions on GCM data conserved RCM-GCM inconsistencies and led to underestimation. In the imperfect model framework, the RCM-emulator was trained with GCM features and downscaled the GCM while exposed to RCM-GCM inconsistencies. This emulator predicted SMB close to the truth, showing it learned the underlying inconsistencies and dynamics. Our results suggest that a deep learning RCM-emulator can learn the proper GCM to RCM downscaling function while working directly with GCM data. Furthermore, the RCM-emulator presents a significant computational gain compared to an RCM simulation. We conclude that machine learning emulators can be applied to produce fast and fine-scaled predictions of RCM simulations from GCM data.
Regional climate models (RCMs) have a high computational cost due to their higher spatial resolution compared to global climate models (GCMs). Therefore, various downscaling approaches have been developed as a surrogate for the dynamical downscaling of GCMs. This study assesses the potential of using a cost‐efficient machine learning alternative to dynamical downscaling by using the example case study of emulating surface mass balance (SMB) over the Antarctic Peninsula. More specifically, we determine the impact of the training framework by comparing two training scenarios: (a) a perfect and (b) an imperfect model framework. In the perfect model framework, the RCM‐emulator learns only the downscaling function; therefore, it was trained with upscaled RCM (UPRCM) features at GCM resolution. This emulator accurately reproduced SMB when evaluated on UPRCM, but its predictions on GCM data conserved RCM‐GCM inconsistencies and led to underestimation. In the imperfect model framework, the RCM‐emulator was trained with GCM features and downscaled the GCM while exposed to RCM‐GCM inconsistencies. This emulator predicted SMB close to the truth, showing it learned the underlying inconsistencies and dynamics. Our results suggest that a deep learning RCM‐emulator can learn the proper GCM to RCM downscaling function while working directly with GCM data. Furthermore, the RCM‐emulator presents a significant computational gain compared to an RCM simulation. We conclude that machine learning emulators can be applied to produce fast and fine‐scaled predictions of RCM simulations from GCM data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.