Introduction A challenge in implementing deformable image registration (DIR) in radiation therapy planning is effectively communicating registration accuracy to the radiation oncologist. This study aimed to evaluate the MIM® quality assurance (QA) tool for rating DIR accuracy. Methods Retrospective DIR was performed on CT images for 35 head and neck cancer patients. The QA tool was used to rate DIR accuracy as good, fair or bad. Thirty registered patient images were assessed independently by three RTs and a further five patients assessed by five RTs. Ratings were evaluated by comparison of Hausdorff Distance (HD), Mean Distance to Agreement (MDA), Dice Similarity Coefficients (DSC) and Jacobian determinants for parotid and mandible subregions on the two CTs post‐DIR. Inter‐operator reliability was assessed using Krippendorff's alpha coefficient (KALPA). Rating time and volume measures for each rating were also calculated. Results Quantitative metrics calculated for most anatomical subregions reflected the expected trend by registration accuracy, with good obtaining the most ideal values on average (HD = 7.50 ± 3.18, MDA = 0.64 ± 0.47, DSC = 0.90 ± 0.07, Jacobian = 0.95 ± 0.06). Highest inter‐operator reliability was observed for good ratings and within the parotids (KALPA 0.66–0.93), whilst ratings varied the most in regions of dental artefact. Overall, average rating time was 33 minutes and the least commonly applied rating by volume was fair. Conclusion Results from qualitative and quantitative data, operator rating differences and rating time suggest highlighting only bad regions of DIR accuracy and implementing clinical guidelines and RT training for consistent and efficient use of the QA tool.
Background and purpose: Radiopacifiers are introduced to bone cements to provide the appearance of bone in kilovoltage (kV) radiographic images. For higher energy megavoltage (MV) radiotherapy treatment beams, however, these radiopacifiers do not cause a bone-like perturbation of dose. This study therefore aimed to determine the impact of the barium-contrasted plastic-based cement materials on radiotherapy dose calculations. Materials and methods: The radiological properties of a physical sample of bone cement were characterised by computed tomography (CT) imaging and transmission measurements. Monte Carlo simulations of percentage depth-dose profiles were performed to determine the possible dose error for MV treatment beams. Dose differences were then investigated for clinical volumetric modulated radiotherapy treatment plans, with and without density overrides applied. Results: Differences of up to 7% were observed at the downstream interface of a 0.6 cm thick bone cement layer, compared to bone. Differences in planning target volume dose-volume metrics varied between −0.5% and 2.0%. Conclusion: Before planning radiotherapy treatments for patients who have undergone cranioplasty, every effort should be made to identify whether a radiopacified bone cement has been implanted. Density overrides should be applied to minimise dose calculation errors, whenever bone cement is used.
Helical TomoTherapy treatment and delivery systems (Accuray Inc, Sunnyvale, USA) allow off-line adaptation of radiotherapy treatments, with dose calculations that use MV computed tomography (CT) data acquired at treatment. This study aimed to assess the potential dosimetric effects of a gas-filled temporary tissue expander (TTE) on the accuracy of breast radiotherapy dose calculations from both the TomoTherapy treatment planning system (TPS), which uses kV CT data, and the TomoTherapy adaptive radiotherapy (ART) system, which uses MV CT data. A TomoTherapy treatment plan was created and delivered to a 3D-printed rectilinear model of a breast with implanted gas-filled TTE, including a stainless steel CO2 container, and film measurements of the delivered dose were compared against dose calculations from the TPS and ART systems. The film measurements showed that the TomoTherapy TPS provided comparatively accurate dose calculations in the ~550 cm2 volume of air that modelled the gas filling of the TTE and within the surrounding tissue-equivalent materials, except in regions where the beam was transmitted through the stainless steel CO2 container, possibly due to the volume of stainless steel being over-estimated in the kV CT images that were used to generate the treatment plan. The ART system provided more accurate dose calculations than the TPS in regions affected by the stainless steel container, but also over-estimated the dose in the air within the TTE. These results suggest that the TomoTherapy TPS and ART systems could be used to produce reliable dose calculations of breast treatments in the presence of gas-filled TTEs, if kV CT imaging options are chosen to avoid artefacts and minimise the need for density over-rides and if treatment targets that include only clinically relevant tissues, and exclude all TTE components, are used to evaluate and compare the doses calculated by both systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.