Dupuytren disease is a fibrotic disorder characterized by contraction of myofibroblast-rich cords and nodules in the hands. The Hippo member Yes-associated protein 1 (YAP1) is activated by tissue stiffness and the profibrotic transforming growth factor-β1, but its role in cell fibrogenesis is yet unclear. We hypothesized that YAP1 regulates the differentiation of dermal fibroblasts into highly contractile myofibroblasts and that YAP1 governs the maintenance of a myofibroblast phenotype in primary Dupuytren cells. Knockdown of YAP1 in transforming growth factor-β1-stimulated dermal fibroblasts decreased the formation of contractile smooth muscle α-actin stress fibers and the deposition of collagen type I, which are hallmark features of myofibroblasts. Translating our findings to a clinically relevant model, we found that YAP1 deficiency in Dupuytren disease myofibroblasts resulted in decreased expression of ACTA2, COL1A1, and CCN2 mRNA, but this did not result in decreased protein levels. YAP1-deficient Dupuytren myofibroblasts showed decreased contraction of a collagen hydrogel. Finally, we showed that YAP1 levels and nuclear localization were elevated in affected Dupuytren disease tissue compared with matched control tissue and partly co-localized with smooth muscle α-actin-positive cells. In conclusion, our data show that YAP1 is a regulator of myofibroblast differentiation and contributes to the maintenance of a synthetic and contractile phenotype, in both transforming growth factor-β1-induced myofibroblast differentiation and primary Dupuytren myofibroblasts.
Genetic background plays an important role in the development of Dupuytren’s disease. A genome-wide association study (GWAS) showed that nine loci are associated with the disease, six of which contain genes that are involved in Wnt signaling (WNT2, WNT4, WNT7B, RSPO2, SFRP4, SULF1). To obtain insight in the role of these genes, we performed expression studies on affected and unaffected patient’s tissues. Surgically obtained nodules and cords from eight Dupuytren’s patients were compared to patient-matched control tissue (unaffected transverse palmar fascia). The Wnt-related genes found in the GWAS, the classical Wnt-downstream protein β-catenin, as well as (myo)fibroblast markers were analyzed using real-time qPCR and immunohistochemical stainings for mRNA levels and protein levels, respectively. The collagen-coding genes COL1A1 and COL3A1 were highly upregulated on mRNA level, both in cords and nodules. Three Wnt-related genes were found to be differently regulated compared to control tissue: WNT2 was downregulated in nodules, WNT7B was upregulated in nodules, and SFRP4 was upregulated in nodules and cords. Immunohistochemistry revealed significantly less staining of Wnt2 in cords, but significantly more staining for Wnt7b in nodules. There was significantly more staining of α-SMA in nodules and cord and β-catenin in nodules than in control tissue. We found differences in expression, both at mRNA and protein level, in several Wnt-related genes found earlier to be associated with Dupuytren’s disease. Of these, Wnt7b was upregulated and found in close association with both α-SMA and β-catenin expressing cells, making it a candidate pro-fibrotic mediator in Dupuytren’s disease.Electronic supplementary materialThe online version of this article (doi:10.1007/s12079-015-0312-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.