Stratum corneum thickness was estimated from water concentration profiles of the skin measured by a confocal Raman spectrometer. Stratum corneum apparent thickness (SCAT) was defined as the depth where the water content reached an almost constant value. Site variations were determined using 15 healthy Japanese subjects (6 males, 9 females), and age variations at the cheek and forearm were examined using 27 female Japanese subjects. There were marked site variations in mean SCAT; 16.8 microm for cheek, 22.6 microm for volar forearm, 29.3 microm for back of the hand, and 173.0 microm for palm. These variations were similar to reported stratum corneum thickness values obtained in biopsy tissues. The SCAT tended to become age-dependently thicker at the forearm, but not at the cheek. In addition, SCAT was increased up to two-fold by hydration for 90 min, while lesser increases were seen with shorter hydration periods.
Our present findings suggest that changes in the concentration depth profiles of water, free amino acids and lipids in the skin depend on age, anatomical site and season. These findings indicate the important roles played by various water-holding substances in the SC in the regulation of SC water content.
A short exposure of skin to a low-humidity environment induced changes in the moisture contents in the stratum corneum and skin surface pattern, which lead us to assume that a dry environment in our daily life would make fine wrinkles related to lack of water in the stratum corneum.
Human skin surface friction was measured by using a KES-SE Frictional Analyzer. Judging from the correlation between either MIU or MMD and sensory evaluation, we considered this instrumental analysis to be useful for evaluating the tactile impression of human skin.
AimsTo determine the diurnal variations of the luminal and stromal areas of the choroid in normal eyes.MethodsThis was a prospective observational study of 38 eyes of 38 normal subjects. The blood pressure, heart rate, intraocular pressure and enhanced depth imaging optical coherence tomographic (EDI-OCT) images were recorded every 3 hours between 6:00 and 21:00 hours. The horizontal EDI-OCT images of the subfoveal choroid were converted to binary images. The central choroidal thickness (CCT), total cross-sectional choroidal area, the luminal areas, stromal areas and the ratio of luminal area to total choroidal area (L/C ratio) were determined.ResultsThere were significant diurnal variations in the CCT, total choroidal area, luminal area and L/C ratio with the maximum values at 6:00 hours and the minimum values at 15:00 hours (p<0.001 for the CCT, p=0.011 for the total choroidal area, p<0.001 for the luminal area and p=0.014 for the L/C ratio). There was no significant variation in the stromal area (p=0.216). The range of fluctuation in the CCT was significantly correlated with that in the luminal area and the total choroidal area (p<0.001). However, there was no significant correlation between the fluctuation range in the CCT and that in the stromal area (p=0.095). There was no statistical relationship between the systemic parameters and the choroidal parameters.ConclusionsThe changes in the luminal area are most likely responsible for the diurnal change in the CCT and subfoveal choroidal area.Trial registration numberUMIN000019060, Pre-results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.