To test the hypothesis that NOx (NO and NO, metabolites of NO) accumulates in red blood cells (RBC) in response to changes in PCO(2) and bicarbonate (HCO) concentration in blood, we examined the effect of changes in PCO(2) and HCO induced by hyperventilation in healthy adults on partitioning of NOx in whole blood. NOx in hemolysate was measured by a high-performance liquid chromatography-Griess system equipped with a C(18) reverse phase column to trap hemoglobin, which enables determination of whole blood NOx concentration and calculation of NOx concentration in RBC with high accuracy and reproducibility. NOx concentration in RBC was lower than that in plasma, and equilibrium between plasma and RBC was achieved rapidly after addition of NO. Changes in PCO(2) and HCO by hyperventilation failed to influence NOx concentrations in both plasma and RBC. Plasma NOx concentrations correlated with whole blood NOx and RBC NOx concentrations. Our results indicate that changes in PCO(2) or HCO induced by hyperventilation do not influence NOx compartmentalization in plasma and RBC.
1. The aim of the present study was to determine whether the steady state NOx concentration reflects NOx formation in vivo. 2. A NO3- load study was performed after achieving NOx steady state. Chronological changes in NOx concentrations in plasma and whole blood samples from nine healthy subjects were determined by the HPLC-Griess system and NOx concentrations in erythrocytes were estimated as a possible NOx compartment influential in regulating plasma NOx concentrations. 3. Analysis was performed using the first-order one-compartment open model and the NOx formation rate was subsequently calculated. 4. The mean (+/-SEM) steady state NOx concentration of plasma (15.5 +/- 1.6 micromol/L), whole blood (12.8 +/- 1.2 micromol/L) and erythrocytes (11.9 +/- 0.7 micromol/L) did not correlate with the NOx formation rate in the compartments (0.50 +/- 0.05, 0.61 +/- 0.04 and 0.91 +/- 0.17 micromol/kg per h, respectively), whereas a significant correlation was found between the steady state NOx concentration and NOx elimination rate (Kel) in plasma (r=-0.69; P=0.04) and whole blood (r=-0.79; P=0.01). 5. Although there was no direct correlation between steady state NOx concentrations and serum creatinine levels, the correlation between half-life and serum creatinine levels was significant (plasma: r=0.60, P=0.02; whole blood: r=0.49, P=0.04). 6. Plasma NOx concentrations correlated significantly with erythrocyte NOx concentrations (r=0.92, P <0.01; erythrocyte NOx=0.66 x plasma NOx). 7. The results of the present study indicate that NOx does not accumulate excessively into erythrocytes at steady state and during a NO3- load and that the steady state NOx concentration in whole blood and plasma preferentially implies NOx elimination (mainly depending on renal function) rather than NOx formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.