Objective
We investigated the relationship between 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET using volume-based parameters and epidermal growth factor receptor (EGFR) mutation status, programmed death-ligand-1 (PD-L1) expression level, and their combination, in pretreated non-small cell lung cancer (NSCLC).
Methods
FDG PET findings and EGFR mutation status and PD-L1 expression level were investigated retrospectively in 93 patients with newly diagnosed NSCLC (77 adenocarcinomas, 16 squamous cell carcinomas). Tumors were divided into six groups: EGFR mutant/negative PD-L1, EGFR mutant/low PD-L1, EGFR mutant/high PD-L1, EGFR wild/negative PD-L1, EGFR wild/low PD-L1, and EGFR wild/high PD-L1. The maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) for primary tumor were measured from PET images. The EGFR mutation status and PD-L1 expression level were estimated in tumor tissue specimens and compared with the PET parameters.
Results
None of the PET parameters differed significantly between EGFR-mutated and wild-type EGFR. According to the PD-L1 level, significant differences were detected in SUVmax (P = 0.001) and TLG (P = 0.016), but not MTV. Comparing all six groups, significant difference was detected in only SUVmax (P = 0.011).
Conclusion
Based on the preliminary results of this study, FDG PET may help in the prediction of PD-L1 expression level, but not EGFR mutation status, in patients with newly diagnosed NSCLC. The SUVmax rather than MTV or TLG, may be of value in predicting the six groups according to the combination of EGFR mutation status and PD-L1 expression level.
F-NaF is a bone-seeking positron-emitting tracer with high sensitivity and specificity for detection of osseous lesions. We report a case of primary glial tumor that showed extraosseous uptake on F-NaF PET/CT. CT revealed a mass in the right parietal lobe with calcification. F-NaF PET/CT showed abnormal tracer uptake in the brain tumor, which was subsequently confirmed to be a glioblastoma by histologic examination.
Identifying the epidermal growth factor receptor (EGFR) mutation status is important for the optimal treatment of patients with EGFR mutations. We investigated the relationship between 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) texture indices and EGFR mutation status in patients with newly diagnosed lung adenocarcinoma. We retrospectively analyzed data of patients with newly diagnosed lung adenocarcinoma who underwent pretreatment FDG PET/computed tomography and EGFR mutation testing between August 2014 and November 2020. Patients were divided into mutated EGFR and wild-type EGFR groups. The maximum standardized uptake value (SUVmax) and 31 texture indices for the primary tumor were calculated from PET images and compared between the two groups. Of the 66 patients included, 22 had mutated EGFR and 44 had wild-type EGFR. The SUVmax did not significantly differ between the two groups. Among the 31 evaluated texture indices, the following five showed a statistically significant difference between the groups: correlation (P = 0.003), gray-level nonuniformity for run (P = 0.042), run length nonuniformity (P = 0.02), coarseness (P = 0.006), and gray-level nonuniformity for zone (P = 0.04). Based on the preliminary results of this study in a small patient population, FDG PET texture indices may be potential imaging biomarkers for the EGFR mutation status in patients with newly diagnosed lung adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.