Lipid nanoparticles (LNPs) are currently in the spotlight as delivery systems for mRNA therapeutics and have been used in the Pfizer/BioNTech and Moderna COVID-19 vaccines. mRNA-LNP formulations have been indicated to require strict control, including maintenance at fairly low temperatures during their transport and storage. Since it is a new pharmaceutical modality, there is a lack of information on the systematic investigation of how storage and handling conditions affect the physicochemical properties of mRNA-LNPs and their protein expression ability. In this study, using the mRNA-LNPs with standard composition, we evaluated the effects of temperature, cryoprotectants, vibration, light exposure, and syringe aspiration from the vials on the physicochemical properties of nanoparticles in relation to their in vitro/in vivo protein expression ability. Among these factors, storage at −80 °C without a cryoprotectant caused a decrease in protein expression, which may be attributed to particle aggregation. Exposure to vibration and light also caused similar changes under certain conditions. Exposure to these factors can occur during laboratory and hospital handling. It is essential to have sufficient knowledge of the stability of mRNA-LNPs in terms of their physical properties and protein expression ability at an early stage to ensure reproducible research and development and medical care.
腎臓に対する mRNA デリバリーの 現状と今後の展望The current situation and perspectives of mRNA delivery to the kidney For mRNA delivery to the kidney, the choice of administration route and vector is very important due to the structural characteristics of the kidney. Furthermore, it is necessary to devise a combination of physical methods to improve the transduction efficiency. The transfeted cells depend on the delivery methods. Therefore, it may be useful to identify the transfected cells and evaluate their expression distribution in the development of therapeutic strategies. Since there are few reports in the field of mRNA delivery to the kidney, this review describes gene/nucleic acid delivery, focusing on administration routes and vectors, and introduces mRNA delivery to the kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.