Abstract:The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e + e − collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the tt threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.
We calculate radiative corrections to a full set of coupling constants for the 125 GeV Higgs boson at the one-loop level in two Higgs doublet models with four types of Yukawa interaction under the softly-broken discrete Z 2 symmetry. The renormalization calculations are performed in the on-shell scheme, in which the gauge dependence in the mixing parameter which appears in the previous calculation is consistently avoided. We first show the details of our renormalization scheme, and present the complete set of the analytic formulae of the renormalized couplings. We then numerically demonstrate how the inner parameters of the model can be extracted by the future precision measurements of these couplings at the high luminosity LHC and the International Linear Collider.
With discovery of the 125 GeV boson h 0 , the existence of a second doublet is very plausible. We show that the "alignment" phenomenon, that h 0 is found to resemble closely the Standard Model Higgs boson, may correspond to Higgs quartic couplings ηi that are O(1) in strength. If the exotic bosons of the second doublet possess extra top Yukawa couplings, which are the least constrained by data, such a two Higgs doublet model could drive electroweak baryogenesis, as well as further "protect" the apparent alignment. The exotic Higgs bosons can be sub-TeV in mass while remaining well hidden so far, with broad parameter space for search at the Large Hadron Collider.
We calculate renormalized Higgs boson couplings with gauge bosons and fermions at the one-loop level in the model with an additional isospin singlet real scalar field. These coupling constants can deviate from the predictions in the standard model due to tree-level mixing effects and one-loop contributions of the extra neutral scalar boson. We investigate how they can be significant under the theoretical constraints from perturbative unitarity and vacuum stability and also the condition of avoiding the wrong vacuum. Furthermore, comparing with the predictions in the Type I two Higgs doublet model, we numerically demonstrate how the singlet extension model can be distinguished and identified by using precision measurements of the Higgs boson couplings at future collider experiments.
We calculate a full set of one-loop corrections to the Higgs boson coupling constants as well as the electroweak parameters. We compute the decay rate of the standard model (SM)-like Higgs boson (h) into diphoton. Renormalized Higgs couplings with the weak gauge bosons hV V (V = W and Z) and the trilinear coupling hhh are also calculated at the one-loop level in the on-shell scheme. Magnitudes of the deviations in these quantities are evaluated in the parameter regions where the unitarity and vacuum stability bounds are satisfied and the predicted W boson mass at the one-loop level is consistent with the data. We find that there are strong correlations among deviations in the Higgs boson couplings hγγ, hV V and hhh. For example, if the event number of the pp → h → γγ channel deviates by +30% (−40%) from the SM prediction, deviations in the one-loop corrected hV V and hhh vertices are predicted about −0.1% (−2%) and −10% (+150%), respectively. The model can be discriminated from the other models by measuring these coupling constants accurately at future collider experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.