Mast cells (MCs) are key effector cells in allergic reactions. However, the inhibitory mechanism that prevents excessive activation of MCs remains elusive. Here we show that leukocyte mono-immunoglobulin-like receptor 3 (LMIR3; also called CD300f) is a negative regulator of MC activation in vivo. LMIR3 deficiency exacerbated MC-dependent allergic responses in mice, including anaphylaxis, airway inflammation, and dermatitis. Both physical binding and functional reporter assays via an extracellular domain of LMIR3 showed that several extracellular lipids (including ceramide) and lipoproteins were possible ligands for LMIR3. Importantly, MCs were frequently surrounded by extracellular ceramide in vivo. Upon engagement of high-affinity immunoglobulin E receptor, extracellular ceramide-LMIR3 binding inhibited MC activation via immunoreceptor tyrosine-based inhibitory and switch motifs of LMIR3. Moreover, pretreatment with LMIR3-Fc fusion protein or antibody against either ceramide or LMIR3 interfered with this binding in vivo, thereby exacerbating passive cutaneous anaphylaxis. Thus, the interaction between extracellular ceramide and LMIR3 suppressed MC-dependent allergic responses.
Juvenile myelomonocytic leukemia (JMML) is an intractable pediatric leukemia with poor prognosis whose molecular pathogenesis is poorly understood, except for somatic or germline mutations of RAS pathway genes, including PTPN11, NF1, NRAS, KRAS and CBL, in the majority of cases. To obtain a complete registry of gene mutations in JMML, whole-exome sequencing was performed for paired tumor-normal DNA from 13 individuals with JMML (cases), which was followed by deep sequencing of 8 target genes in 92 tumor samples. JMML was characterized by a paucity of gene mutations (0.85 non-silent mutations per sample) with somatic or germline RAS pathway involvement in 82 cases (89%). The SETBP1 and JAK3 genes were among common targets for secondary mutations. Mutations in the latter were often subclonal and may be involved in the progression rather than the initiation of leukemia, and these mutations associated with poor clinical outcome. Our findings provide new insights into the pathogenesis and progression of JMML.
The influence of chronic antidepressant administration on expression of the three major phosphodiesterase (PDE) 4 subtypes found in brain (PDE4A, PDE4B, and PDE4D) was examined. The treatments tested included representatives of four major classes of antidepressants: selective reuptake inhibitors of serotonin (sertraline and fluoxetine) or norepinephrine (desipramine), a monoamine oxidase inhibitor (tranylcypromine), and electroconvulsive seizure. Expression of PDE4A and PDE4B, but not PDE4D, mRNA and immunoreactivity were significantly increased in rat frontal cortex by chronic administration of each of the four classes of antidepressants. We also found that antidepressant administration significantly increased the expression of PDE4B mRNA in the nucleus accumbens, a brain region thought to mediate pleasure and reward that could also contribute to the anhedonia often observed in depressed patients. In contrast, expression of PDE4A and PDE4B were not influenced by short-term treatment (1 or 7 d) and were not influenced by chronic administration of nonantidepressant psychotropic drugs (cocaine or haloperidol), demonstrating the time dependence and pharmacological specificity of these effects. Upregulation of PDE4A and PDE4B may represent a compensatory response to antidepressant treatment and activation of the cAMP system. The possibility that targeted inhibition of these PDE4 subtypes may produce an antidepressant effect is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.