Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) definitive phage type 104 (DT104), S. enterica subspecies enterica serovar Worthington (S. Worthington) and S. bongori produce ArtA and ArtB (ArtAB) toxin homologues, which catalyse ADP-ribosylation of pertussis toxin-sensitive G protein. ArtAB gene (artAB) is encoded on prophage in DT104 and its expression is induced by mitomycin C (MTC) and hydrogen peroxide (H 2 O 2 ) that trigger the bacterial SOS response. Although the genetic regulatory mechanism associated with artAB expression is not characterized, it is thought to be associated with prophage induction, which occurs when the RecA-mediated SOS response is triggered. Here we show that subinhibitory concentration of quinolone antibiotics that are SOS-inducing agents, also induce ArtAB production in these Salmonella strains. Both MTC and fluoroquinolone antibiotics such as enrofloxacin-induced artA and recA transcription and artAB-encoding prophage (ArtAB-prophage) in DT104 and S. Worthington. However, in S. bongori, which harbours artAB genes on incomplete prophage, artA transcription was induced by MTC and enrofloxacin, but prophage induction was not observed. Taken together, these results suggest that SOS response followed by induction of artAB transcription is essential for ArtAB production. H 2 O 2 -mediated induction of ArtAB prophage and efficient production of ArtAB was observed in DT104 but not in S. Worthington and S. bongori. Therefore, induction of artAB expression with H 2 O 2 is strain-specific, and the mode of action of H 2 O 2 as an SOS-inducing agent might be different from those of MTC and quinolone antibiotics.
The objective of this study was to provide a screening scheme of persistently infected (PI) cattle on dairy herds by combining reverse-transcription polymerase chain reaction (RT-PCR) to detect bovine viral diarrhea virus (BVDV) in milk tanker samples and commercial enzyme-linked immunosorbent assay to detect BVDV antibodies in bulk tank milk. We conducted a pilot survey and regional survey targeting all dairy farms in Ibaraki Prefecture by using milk tanker and bulk tank milk samples to screen PI cattle. Farms with positive samples underwent a follow-up test to identify PI cattle. In the pilot study, all virus-positive samples in bulk tank milk were included in the positive milk tanker samples. The RT-PCR assay successfully detected BVDV at dilutions of 1:1,600 by using two PI cows' milk. In the regional survey, 5 of 79 milk tanker samples were virus-positive. The virus was detected in three PI lactating cows and one PI calf on three farms. Antibody screening using bulk tank milk samples revealed 15 of 363 samples were positive, and 12 of 348 farms were BVDV antibody-positive. Follow-up tests on one farm identified three PI calves. Thus, eight PI cattle on five farms were identified in this study. In conclusion, combining BVDV detection using milk tanker samples and antibody detection using bulk tank milk is a feasible and economical method to efficiently screen PI cattle and confirm the PI-free status among dairy herds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.