We provide a new look at Cover's universal portfolio, where we define probability density functions (p.d.f.) representing wealth functions of portfolios. In this view, log wealth ratio of a portfolio sequence is equal to coding regret of its p.d.f. for the target class which consists of the p.d.f. representing constantly rebalanced portfolios (CRP). It is revealed that the p.d.f. of a CRP is a hidden Markov model (HMM) with the restriction that the latent variable's distribution is Bernoulli. Further we consider the portfolio with the generalized target class defined by extending the latent variable's distribution to a parametric model of stochastic processes. Then, we discuss the minimax log wealth ratio of the class analyzing Fisher information of the p.d.f. for portfolios, which is strictly smaller than that of the latent variable's model. Finally we propose a portfolio strategy using the Jeffreys prior of the class of p.d.f. and an efficient method to calculate causal portfolios using the Baum-Welch algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.