We report on the synthesis and self-assembly of three novel lipophilic guanosine derivatives exposing a ferrocene moiety in the C(5') position of the sugar unit. Their self-association in solution, and at the solid/liquid interface, can be tuned by varying the size and nature of the C(8)-substituent, leading to the generation of either G-ribbons, lamellar G-dimer based arrays or the G4 cation-free architectures.
The reaction of sulfonyl peptides containing L- or D-configured Ser or Thr with bis(succinimidyl) carbonate in the presence of a catalytic amount of a base affords, in solution or in the solid phase, the corresponding peptides with one or two, consecutive or alternate oxazolidin-2-ones (Oxd). The Oxd ring can be regarded to as a pseudo-Pro with an exclusively trans conformation of the preceding peptide bond; homochiral Oxd-containing peptides adopt extended conformations, while the presence of a D-configured Oxd favours folded conformations.
The hierarchical
self-assembly of various lipophilic guanosines
exposing either a phenyl or a ferrocenyl group in the C(8) position
was investigated. In a solution, all the derivatives were found to
self-assemble primarily into isolated guanine (G)-quartets. In spite
of the apparent similar bulkiness of the two substituents, most of
the derivatives form disordered structures in the solid state, whereas
a specific 8-phenyl derivative self-assembles into an unprecedented,
cation-free stacked G-quartet architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.