We study non-totally geodesic Lagrangian submanifolds of the nearly Kähler 𝕊3 × 𝕊3 for which the projection on the first component is nowhere of maximal rank. We show that this property can be expressed in terms of the so-called angle functions and that such Lagrangian submanifolds are closely related to minimal surfaces in 𝕊3. Indeed, starting from an arbitrary minimal surface, we can construct locally a large family of such Lagrangian immersions, including one exceptional example. We also show that locally all such Lagrangian submanifolds can be obtained in this way.
In this paper, we study locally strongly convex centroaffine hypersurfaces with parallel cubic form with respect to the Levi-Civita connection of the centroaffine metric. As the main result, we obtain a complete classification of such centroaffine hypersurfaces. The result of this paper is a centroaffine version of the complete classification of locally strongly convex equiaffine hypersurfaces with parallel cubic form due to Hu, Li and Vrancken [12].
Abstract. We study surfaces in Euclidean space which are obtained as the sum of two curves or that are graphs of the product of two functions. We consider the problem of finding all these surfaces with constant Gauss curvature. We extend the results to non-degenerate surfaces in LorentzMinkowski space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.