Mass spectrometric (MS) binding assays, a powerful tool to determine affinities of single drug candidates toward chosen targets, were recently demonstrated to be suitable for the screening of compound libraries generated with reactions of dynamic combinatorial chemistry when rendering libraries pseudostatic. Screening of small hydrazone libraries targeting γ-aminobutyric acid transporter 1 (GAT1), the most abundant γ-aminobutyric acid (GABA) transporter in the central nervous system, revealed two nipecotic acid derived binders with submicromolar affinities. Starting from the biphenyl carrying hit as lead structure, the objective of the present study was to discover novel high affinity GAT1 binders by screening of biphenyl focused pseudostatic hydrazone libraries formed from hydrazine 10 and 36 biphenylcarbaldehydes 11c-al. Hydrazone 12z that carried a 2',4'-dichlorobiphenyl residue was found to be the most potent binder with low nanomolar affinity (pK(i) = 8.094 ± 0.098). When stable carba analogues of representative hydrazones were synthesized and evaluated, the best binder 13z was again displaying the 2',4'-dichlorobiphenyl moiety (pK(i) = 6.930 ± 0.021).
Well-known inhibitors of the γ-aminobutyric acid (GABA) transporter GAT1 share a common scaffold of a small cyclic amino acid linked by an alkyl chain to a moiety with two aromatic rings. Tiagabine, the only FDA-approved GAT1 inhibitor, is a typical example. Some small amino acids such as (R)-nipecotic acid are medium-to-strong binders of GAT1, but similar compounds, such as proline, are very weak binders. When substituted with 4,4-diphenylbut-3-en-1-yl (DPB) or 4,4-bis(3-methylthiophen-2-yl)but-3-en-1-yl (BTB) groups, the resulting compounds have similar pKi and pIC50 values, even though the pure amino acids have very different values. To investigate if small amino acids and their substituted counterparts share a similar binding mode, we synthesized butyl-, DPB-, and BTB-substituted derivatives of small amino acids. Supported by the results of docking studies, we propose different binding modes not only for unsubstituted und substituted, but also for strong- and weak-binding amino acids. These data lead to the conclusion that following a fragment-based approach, not pure but N-butyl-substituted amino acids should be used as starting points, giving a better estimate of the activity when a BTB or DPB substituent is added.
A new series of potent and selective mGAT1 inhibitors has been identified, featuring a nipecotic acid residue and an N-butenyl linker with a 2-biphenyl residue at the ω-position. Docking, combined with MD calculations, revealed a binding mode for the new compounds similar to that of tiagabine, the only mGAT1 inhibitor currently approved as antiepileptic drug. For the synthesis, a Suzuki-Miyaura cross-coupling reaction was used as a key step by which variously substituted biaryl subunits were assembled. Biological evaluation revealed several compounds that possess binding affinities and inhibitory potencies toward mGAT1, together with subtype selectivities against mGAT2-mGAT4 that were similar to or even higher than those for tiagabine. A derivative carrying the 2',4'-dichloro-2-biphenyl moiety attached to N-but-3-enylnipecotic acid at the terminal position of the linker chain was found to be the most potent binder, with the racemic form of the compound displaying a binding affinity of 8.05±0.13 (pKi ), while the R enantiomer exhibited an affinity value of 8.33±0.06 (pKi ).
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
An efficient one-pot double Suzuki-Miyaura crosscoupling reaction between bifunctional phenylene-1,4-bis(potassium trifluoroborate) and aryl and heteroaryl bromides is described. The scope and limitations of this methodology that enables the synthesis of tri(hetero)aryl derivatives, potentially useful as drugs and in the field of materials science, have also been probed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.