The management of T2DM requires aggressive treatment to achieve glycemic and cardiovascular risk factor goals. In this setting, metformin, an old and widely accepted first line agent, stands out not only for its antihyperglycemic properties but also for its effects beyond glycemic control such as improvements in endothelial dysfunction, hemostasis and oxidative stress, insulin resistance, lipid profiles, and fat redistribution. These properties may have contributed to the decrease of adverse cardiovascular outcomes otherwise not attributable to metformin’s mere antihyperglycemic effects. Several other classes of oral antidiabetic agents have been recently launched, introducing the need to evaluate the role of metformin as initial therapy and in combination with these newer drugs. There is increasing evidence from in vivo and in vitro studies supporting its anti-proliferative role in cancer and possibly a neuroprotective effect. Metformin’s negligible risk of hypoglycemia in monotherapy and few drug interactions of clinical relevance give this drug a high safety profile. The tolerability of metformin may be improved by using an appropiate dose titration, starting with low doses, so that side-effects can be minimized or by switching to an extended release form. We reviewed the role of metformin in the treatment of patients with type 2 diabetes and describe the additional benefits beyond its glycemic effect. We also discuss its potential role for a variety of insulin resistant and pre-diabetic states, obesity, metabolic abnormalities associated with HIV disease, gestational diabetes, cancer, and neuroprotection.
AimsTherapeutic inertia, defined as the failure to initiate or intensify therapy in a timely manner according to evidence‐based clinical guidelines, is a key reason for uncontrolled hyperglycaemia in patients with type 2 diabetes. The aims of this systematic review were to identify how therapeutic inertia in the management of hyperglycaemia was measured and to assess its extent over the past decade.Materials and MethodsSystematic searches for articles published from January 1, 2004 to August 1, 2016 were conducted in MEDLINE and Embase. Two researchers independently screened all of the titles and abstracts, and the full texts of publications deemed relevant. Data were extracted by a single researcher using a standardized data extraction form.ResultsThe final selection for the review included 53 articles. Measurements used to assess therapeutic inertia varied across studies, making comparisons difficult. Data from low‐ to middle‐income countries were scarce. In most studies, the median time to treatment intensification after a glycated haemoglobin (HbA1c) measurement above target was more than 1 year (range 0.3 to >7.2 years). Therapeutic inertia increased as the number of antidiabetic drugs rose and decreased with increasing HbA1c levels. Data were mainly available from Western countries. Diversity of inertia measures precluded meta‐analysis.ConclusionsTherapeutic inertia in the management of hyperglycaemia in patients with type 2 diabetes is a major concern. This is well documented in Western countries, but corresponding data are urgently needed in low‐ and middle‐income countries, in view of their high prevalence of type 2 diabetes.
Cardiovascular diseases are the most prevalent cause of morbidity and mortality among patients with type 1 or type 2 diabetes. The proposed mechanisms that can link accelerated atherosclerosis and increased cardiovascular risk in this population are poorly understood. It has been suggested that an association between hyperglycemia and intracellular metabolic changes can result in oxidative stress, low-grade inflammation, and endothelial dysfunction. Recently, epigenetic factors by different types of reactions are known to be responsible for the interaction between genes and environment and for this reason can also account for the association between diabetes and cardiovascular disease. The impact of clinical factors that may coexist with diabetes such as obesity, dyslipidemia, and hypertension are also discussed. Furthermore, evidence that justify screening for subclinical atherosclerosis in asymptomatic patients is controversial and is also matter of this review. The purpose of this paper is to describe the association between poor glycemic control, oxidative stress, markers of insulin resistance, and of low-grade inflammation that have been suggested as putative factors linking diabetes and cardiovascular disease.
Alpha-lipoic acid is a naturally occurring substance, essential for the function of different enzymes that take part in mitochondria’s oxidative metabolism. It is believed that alpha-lipoic acid or its reduced form, dihydrolipoic acid have many biochemical functions acting as biological antioxidants, as metal chelators, reducers of the oxidized forms of other antioxidant agents such as vitamin C and E, and modulator of the signaling transduction of several pathways. These above-mentioned actions have been shown in experimental studies emphasizing the use of alpha-lipoic acid as a potential therapeutic agent for many chronic diseases with great epidemiological as well economic and social impact such as brain diseases and cognitive dysfunctions like Alzheimer disease, obesity, nonalcoholic fatty liver disease, burning mouth syndrome, cardiovascular disease, hypertension, some types of cancer, glaucoma and osteoporosis. Many conflicting data have been found concerning the clinical use of alpha-lipoic acid in the treatment of diabetes and of diabetes-related chronic complications such as retinopathy, nephropathy, neuropathy, wound healing and diabetic cardiovascular autonomic neuropathy. The most frequent clinical condition in which alpha-lipoic acid has been studied was in the management of diabetic peripheral neuropathy in patients with type 1 as well type 2 diabetes. Considering that oxidative stress, a imbalance between pro and antioxidants with excessive production of reactive oxygen species, is a factor in the development of many diseases and that alpha-lipoic acid, a natural thiol antioxidant, has been shown to have beneficial effects on oxidative stress parameters in various tissues we wrote this article in order to make an up-to-date review of current thinking regarding alpha-lipoic acid and its use as an antioxidant drug therapy for a myriad of diseases that could have potential benefits from its use.Electronic supplementary materialThe online version of this article (doi:10.1186/1758-5996-6-80) contains supplementary material, which is available to authorized users.
BackgroundThe global prevalence of type 2 diabetes-related complications is not well described. We assessed prevalence of vascular complications at baseline in DISCOVER (NCT02322762; NCT02226822), a global, prospective, observational study program of 15,992 patients with type 2 diabetes initiating second-line therapy, conducted across 38 countries.MethodsPatients were recruited from primary and specialist healthcare settings. Data were collected using a standardized case report form. Prevalence estimates of microvascular and macrovascular complications at baseline were assessed overall and by country and region, and were standardized for age and sex. Modified Poisson regression was used to assess factors associated with the prevalence of complications.ResultsThe median duration of type 2 diabetes was 4.1 years (interquartile range [IQR]: 1.9–7.9 years), and the median glycated hemoglobin (HbA1c) level was 8.0% (IQR: 7.2–9.1%). The crude prevalences of microvascular and macrovascular complications were 18.8% and 12.7%, respectively. Common microvascular complications were peripheral neuropathy (7.7%), chronic kidney disease (5.0%), and albuminuria (4.3%). Common macrovascular complications were coronary artery disease (8.2%), heart failure (3.3%) and stroke (2.2%). The age- and sex-standardized prevalence of microvascular complications was 17.9% (95% confidence interval [CI] 17.3–18.6%), ranging from 14.2% in the Americas to 20.4% in Europe. The age- and sex-standardized prevalence of macrovascular complications was 9.2% (95% CI 8.7–9.7%), ranging from 4.1% in South-East Asia to 18.8% in Europe. Factors positively associated with vascular complications included age (per 10-year increment), male sex, diabetes duration (per 1-year increment), and history of hypoglycemia, with rate ratios (95% CIs) for microvascular complications of 1.14 (1.09–1.19), 1.30 (1.20–1.42), 1.03 (1.02–1.04) and 1.45 (1.25–1.69), respectively, and for macrovascular complications of 1.41 (1.34–1.48), 1.29 (1.16–1.45), 1.02 (1.01–1.02) and 1.24 (1.04–1.48), respectively. HbA1c levels (per 1.0% increment) were positively associated with microvascular (1.05 [1.02–1.08]) but not macrovascular (1.00 [0.97–1.04]) complications.ConclusionsThe global burden of microvascular and macrovascular complications is substantial in these patients with type 2 diabetes who are relatively early in the disease process. These findings highlight an opportunity for aggressive early risk factor modification, particularly in regions with a high prevalence of complications.Trial registration ClinicalTrials.gov; NCT02322762. Registered 23 December 2014. https://clinicaltrials.gov/ct2/show/NCT02322762. ClinicalTrials.gov; NCT02226822. Registered 27 August 2014. https://clinicaltrials.gov/ct2/show/NCT02226822Electronic supplementary materialThe online version of this article (10.1186/s12933-018-0787-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.