Lead (II) sulfide (PbS) were synthesized by sonochemical method and crystals with cubic structure exhibit aggregated nanoparticles with size in the range of 50-100 nm. Commercial Poly(methyl methacrylate) (PMMA) containing the PbS nanoparticles (PbS-NP) exposed to gamma irradiation were investigated and both the viscosity-average molar mass (M v ) and degradation index (DI) values were measured. Ours results showed decreases in molar mass when the systems were gamma irradiated, i. e., random scission effects that take place in the main chain. On the other hand, DI results showed that the addition of PbS-NP at 0.3 wt% into the PMMA matrix decreased 100% the number of main chain scissions. Results about the free radical scavenger action of the PbS-NP were obtained by use of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazyl radical (DPPH) and are discussed in this study. Analysis of infrared spectra, refraction index, mechanical, and thermal properties showed influence of the PbS-NP in the physical behavior of PMMA.
Poly (methyl methacrylate), PMMA, may be used in manufacturing of devices, which are exposed to gamma irradiation. However, the polymer undergoes significant changes in its properties during process and the use of additives is a common form to stabilize the PMMA matrix. In this way, stibnite was synthesized by sonochemical method and the amorphous powder constituted of nanospheres was obtained and investigated as additive. Commercial PMMA containing stibnite nanoparticles (ST-NP) was investigated and the samples were irradiated with gamma radiation ( 60 Co). Our results showed that the addition of ST-NP at 0.3 wt% into the PMMA decreased the number of main chain scissions caused by the irradiation process, resulting in radiolytic stabilization of the polymer matrix. Analyses of mechanical properties showed influence of the ST-NP in the physical behavior of PMMA. Our findings suggest that stibnite nanoparticles are an effective additive for PMMA used in application of radiation resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.