The Amazonian rainforest is a hyper-diverse ecosystem in the number of species and the myriad of intertaxon relationships that are mostly understudied. In order to characterize a dominant and economically important Amazonian species, the Brazil nut tree (Bertholletia excelsa Bonpl.), at the genome level, wegenerated high-coverage long-read sequencing data from the leaves of a single individual. The genome assembly revealed an unexpected discovery: two circular contigs that could be assigned to the chromosome and a plasmid of a Pantoea stewartii strain. Comparative genomics revealed that this strain belongs to the indologenes subspecies and displays high synteny with other strains isolated from diseased leaves of the neotropical palm Bactris gasipaes Kunth. Investigation of pathogenicity-related genes revealed the absence of the entire type III secretion system gene cluster in the plasmid, which was otherwise highly similar to a plasmid from an isolate known to cause disease in Dracaena sanderiana Mast. In contrast, several genes associated with plant-growth promoting traits were detected, including genes involved in indole-3-acetic acid (IAA) production, phosphate solubilization, and biosynthesis of siderophores. In summary, we report the genome of an uncultivated P. stewartii subsp. indologenes strain associated with the Brazil nut tree and potentially a plant growth-promoting bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.