Abstract. In this work we talk about some patterns on partitions considered by the 1 st Rogers-Ramanujan Identity. Looking for a new bijective proof for it, we have studied partitions into parts congruent to ±1 (mod 5) and have created a two-line matrix representation for them. By adding up their second line elements, we have obtained the number of parts of the related partitions. We classify the partitions according to the sum on the second row of the matrix associated to it and organize the data on a table, obtaining some partition identitities.
From two-line matrix interpretations of Mock Theta Functions ρ(q), σ(q) and ν(q) introduced in [5], we have obtained identities for the partitions generated by their respective general terms, whose proofs are done in a completely combinatorial way. We have also obtained relations between partitions into two colours generated by ρ(q) and σ(q), and also by ν(q).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.