The organization of DNA into chromatin is dynamic; nucleosomes are frequently displaced to facilitate the ability of regulatory proteins to access specific DNA elements. To gain insight into nucleosome dynamics, and to follow how dynamics change during differentiation, we used a technique called time-ChIP to quantitatively assess histone H3.3 turnover genome-wide during differentiation of mouse ESCs. We found that, without prior assumptions, high turnover could be used to identify regions involved in gene regulation. High turnover was seen at enhancers, as observed previously, with particularly high turnover at super-enhancers. In contrast, regions associated with the repressive Polycomb-Group showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon differentiation, numerous changes in H3.3 turnover rates were observed, the majority of which occurred at enhancers. Thus, time-ChIP measurement of histone turnover shows that active enhancers are unusually dynamic in ESCs and changes in highly dynamic nucleosomes predominate at enhancers during differentiation.DOI: http://dx.doi.org/10.7554/eLife.15316.001
Understanding chromatin dynamics is essential to define the contribution of chromatin to heritable gene silencing and the long-term maintenance of gene expression. Here we present a detailed protocol for time-ChIP, a novel method to measure histone turnover at high resolution across long timescales. This method is based on the SNAP-tag, a self-labeling enzyme that can be pulse labeled with small molecules in cells. Upon pulse biotinylation of a cohort of SNAP-tagged histones we can determine their abundance and fate across a chase period using a biotin-specific chromatin pulldown followed by DNA sequencing or quantitative PCR. This method is unique in its ability to trace the long-term fate of a chromatin bound histone pool, genome wide. In addition to a step by step protocol, we outline advantages and limitations of the method in relation to other existing techniques. time-ChIP can define regions of high and low histone turnover and identify the location of pools of long lived histones.
Objectives Previous studies showed that noggin gene (NOG) sequence alterations, as well as epigenetic factors, could influence mandibular development. The aim of this study was to analyze clinical characteristics, NOG gene sequences, and promoter methylation sites in patients with mandibular micrognathism. Materials and Methods A total of 35 individuals of five Colombian families were subject to clinical and cephalometric analysis for mandibular micrognathism. One nonaffected individual of each family was included as a control. DNA was isolated from whole blood sample from all individuals by salting out method. Nine NOG gene fragments were amplified by polymerase chain reaction (PCR) and sequenced. Identification of CpG islands for methylation analysis at the NOG gene promoter was performed by MSP-PCR kit (Qiagen R). Statistical Analysis A descriptive statistical analysis was carried out evaluating the presence or absence of genetics variants and the methylation sites in the NOG gene. Results NOG sequence results of affected individuals with mandibular micrognathism for one of the families studied demonstrated that they were heterozygous for 672 C/A (new mutation). For a second family, individuals were heterozygous for 567 G/C (single nucleotide polymorphism [SNP] RS116716909). For DNA analyzed from all patients studied, no methylations were observed at the NOG gene promoter region. Conclusion Our results suggest that 672 C/A and 567 G/C variants could be involved in the presence of mandibular micrognathism. Moreover, lack of methylation sites at the NOG gene promoter region of all individuals studied suggests possibly other epigenetic factors could modulate mandibular growth. The search of genetic variants related with mandibular micrognathism will allow to predict in an integral way the development patterns of the patients and therefore establish a better clinical treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.