PurposeNewer flat panel angiographic detector (FD) systems have the capability to generate parenchymal blood volume (PBV) maps. The ability to generate these maps in the angiographic suite has the potential to markedly expedite the triage and treatment of patients with acute ischemic stroke. The present study compares FP-PBV maps with cerebral blood volume (CBV) maps derived using standard dynamic CT perfusion (CTP) in a population of patients with stroke.Methods56 patients with cerebrovascular ischemic disease at two participating institutions prospectively underwent both standard dynamic CTP imaging followed by FD-PBV imaging (syngo Neuro PBV IR; Siemens, Erlangen, Germany) under a protocol approved by both institutional review boards. The feasibility of the FD system to generate PBV maps was assessed. The radiation doses for both studies were compared. The sensitivity and specificity of the PBV technique to detect (1) any blood volume deficit and (2) a blood volume deficit greater than one-third of a vascular territory, were defined using standard dynamic CTP CBV maps as the gold standard.ResultsOf the 56 patients imaged, PBV maps were technically adequate in 42 (75%). The 14 inadequate studies were not interpretable secondary to patient motion/positioning (n=4), an injection issue (n=2), or another reason (n=8). The average dose for FD-PBV was 219 mGy (median 208) versus 204 mGy (median 201) for CT-CBV. On CT-CBV maps 26 of 42 had a CBV deficit (61.9%) and 15 (35.7%) had a deficit that accounted for greater than one-third of a vascular territory. FD-PBV maps were 100% sensitive and 81.3% specific to detect any CBV deficit and 100% sensitive and 62.9% specific to detect any CBV deficit of greater than one-third of a territory.ConclusionsPBV maps can be generated using FP systems. The average radiation dose is similar to a standard CTP examination. PBV maps have a high sensitivity for detecting CBV deficits defined by conventional CTP. PBV maps often overestimate the size of CBV deficits. We hypothesize that the FP protocol initiates PBV imaging prior to complete saturation of the blood volume in areas perfused via indirect pathways (ie, leptomeningeal collaterals), resulting in an overestimation of CBV deficits, particularly in the setting of large vessel occlusion.
Background X-ray magnetic resonance fusion (XMRF) allows for use of 3D data during cardiac catheterization. However, to date, technical requirements have limited the use of this modality in clinical practice. We report on a new internal-marker XMRF method that we have developed and describe how we used XMRF during cardiac catheterization in congenital heart disease. Methods and Results XMRF was performed in a phantom and in 23 patients presenting for cardiac catheterization who also needed cardiac MRI for clinical reasons. The registration process was performed in <5 minutes per patient, with minimal radiation (0.004 to 0.024 mSv) and without contrast. Registration error was calculated in a phantom and in 8 patients using the maximum distance between angiographic and 3D model boundaries. In the phantom, the measured error in the anteroposterior projection had a mean of 1.15 mm (standard deviation, 0.73). The measured error in patients had a median of 2.15 mm (interquartile range, 1.65 to 2.56 mm). Internal markers included bones, airway, image artifact, calcifications, and the heart and vessel borders. The MRI data were used for road mapping in 17 of 23 (74%) cases and camera angle selection in 11 of 23 (48%) cases. Conclusions Internal marker–based registration can be performed quickly, with minimal radiation, without the need for contrast, and with clinically acceptable accuracy using commercially available software. We have also demonstrated several potential uses for XMRF in routine clinical practice. This modality has the potential to reduce radiation exposure and improve catheterization outcomes.
C-arm angiography systems offer great flexibility in the acquisition of trajectories for computed tomography. Theoretically, these systems are able to scan patients while standing in an upright position. This would allow novel insights into structural changes of the human anatomy while weight bearing. However, this would require a scan on a horizontal trajectory parallel to the ground floor which is currently not supported by standard C-arm CT acquisition protocols.In this paper, we compared the standard vertical and the new horizontal scanning trajectories by analysis of the source positions and source to detector distances during the scan. We employed a C-arm calibration phantom to compute the exact scan geometry. Based on the analysis of the projection matrices, we computed the source position in 3D and the source to detector distance for each projection. We then used the calibrated scan geometries to reconstruct the calibration phantom. Based on this reconstruction in comparison to the ideal phantom geometry we also evaluated the geometric reconstruction error.As expected, both the vertical and the horizontal scan trajectories exhibit a significant C-arm "wobble". But in both kinds of trajectories, the reproducibility over several scans was comparable. We were able to reconstruct the calibration phantom with satisfactory geometric reconstruction accuracy. With a reconstruction error of 0.2 mm, we conclude that horizontal C-arm scans are possible and show properties similar to those of vertical C-arm scans.The remaining challenge is compensation for the involuntary movement of the standing subject during a weight-bearing acquisition. We investigated this using an optical tracking system and found that the average movement at the knee while standing upright for 5 seconds is between 0.42 mm and 0.54 mm, and goes up to as much as 12 mm when the subject is holding a 60º squat. This involuntary motion is much larger than the reconstruction accuracy. Hence, we expect artifacts in reconstructions to be significant for upright positions, and overwhelming in squat positions if no motion correction is applied.
PurposeTo demonstrate the feasibility of the application of integrated flat detector (FD) CT and fluoroscopic guidance (iGuide) for the placement of external ventricular drains (EVD) within the neuroangiography suite.MethodsA retrospective review of a prospectively maintained endovascular database identified six patients who underwent EVD placement using iGuide. Patient characteristics, operator, number of passes, accuracy of placement, immediate and delayed periprocedural complications and radiation exposure were assessed.ResultsFive patients with subarachnoid hemorrhage and one patient with a large cerebellar infarct (average age 45.5 years (range 39–53), four women) underwent EVD placement within the angiography suite using iGuide. Four procedures were performed by a neuroradiologist and two by a neurosurgeon. All catheters were placed with a single pass and all terminated within the frontal horn of the ipsilateral lateral ventricle. No parenchymal or intraventricular hemorrhages were encountered after catheter placement. No patients experienced any immediate or delayed periprocedural complications. Radiation exposure related to the FD CTs required for placement was 593.7 mGy (range 539–673).ConclusionsEVD placement under combined CT and fluoroscopic control within the neuroangiography suite is feasible. The technique predictably allows optimized EVD catheter placement with a single pass. We propose that this technique could improve the accuracy, and potentially reduce the complications, of EVD insertion in cerebrovascular patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.