Data reduction techniques play a key role in instance-based classification to lower the amount of data to be processed. Prototype generation aims to obtain a reduced training set in order to obtain accurate results with less effort. This translates into a significant reduction in both algorithms’ spatial and temporal burden. This issue is particularly relevant in multi-label classification, which is a generalization of multiclass classification that allows objects to belong to several classes simultaneously. Although this field is quite active in terms of learning algorithms, there is a lack of data reduction methods. In this paper, we propose several prototype generation methods from multi-label datasets based on Granular Computing. The simulations show that these methods significantly reduce the number of examples to a set of prototypes without significantly affecting classifiers’ performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.