For the first time commercially relevant catalysts for the copolymerization of ethylene and styrene have been identified. The catalysts maintain very high copolymer efficiencies at relatively high reactor temperatures without sacrificing styrene comonomer reactivity. The observations which led to this discovery are based upon the kinetic analysis of ethylene-styrene copolymerization using constrained geometry catalyst (eta5-C5Me4)(SiMe2-N-t-Bu)TiMe2 (1). This analysis revealed a substantial styrene penultimate monomer effect. Inherent reactivity of 1 toward styrene is greatly improved when the penultimate monomer on the growing polymer chain is styrene rather than ethylene. The presence of a penultimate styrene effect led to the hypothesis that catalysts bearing aromatic moieties in close proximity to the active site could lead to enhancement of styrene reactivity for this catalyst family. This hypothesis was born out by two new constrained geometry catalysts, one having two phenyl substituents placed in the 3 and 3' positions of the Cp ring (2) and the other with a 2,2'-biphenyl fragment attached to the Cp ring (3). Both catalysts exhibit higher activity than that of 1 and, more importantly, much higher styrene reactivity leading to copolymers with substantially increased styrene content (21.5% for 2, 30.6% for 3) as compared to 1 (11%) under the same polymerization conditions. Analysis of the X-ray crystal structures of 2 and 3 shows no overriding structural arguments for the increased performance. Outstanding polymerization characteristics achieved with 3 make this catalyst a candidate for commercial production of ethylene-styrene resins in a solution process.
The group IV metal chelating diamide complex 2 has been prepared and characterized by 1 H and 13 C{ 1 H} NMR spectroscopy and single-crystal X-ray structure analysis. This complex is an active catalyst upon combining with the appropriate activator. The catalyst efficiencies, however, are considerably lower than those of Cp-based catalysts. The polydispersities of the polymers produced were found to be broader than those observed for Cp-based single-site catalytic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.