Gelatinase B is a member of the matrix metalloproteinase family that efficiently cleaves gelatin, elastin, and types V and X collagen. To understand the contribution of the active site of the enzyme (amino acid residues 373-456) in these activities, we studied catalytic properties of a fusion protein consisting of maltose binding protein and the active site region of gelatinase B. We found that addition of the active site of gelatinase B, which corresponds to 12% of the total protein molecule, to maltose binding protein is sufficient to endow the protein with the ability to cleave the peptide substrates Mca-PLGL(Dpa)AR-NH(2) and DNP-PLGLWA-(D)-R-NH(2). The fusion protein hydrolyzed the Mca-PLGL(Dpa)AR-NH(2) peptide with the same efficiency as that of the stromelysin, k(cat)/K(m) approximately 1.07 x 10(6) M(-)(1) h(-)(1). The fusion protein, however, was not able to degrade the large substrate, gelatin. Inhibition of the activity of the protein by EDTA suggested that its activity was metal dependent. ESR analyses indicated that the fusion protein bound one molecule of Zn(2+). In addition, Z-Pro-Leu-Gly-hydroxamate and TIMP-1 inhibited the activity of the protein, suggesting that the structure of the active site of the fusion protein is similar to that of the other metalloproteinases. These data provide fundamental information about the structural elements required for transforming a protein to a metalloprotease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.