The Tropical Composition, Cloud and Climate Coupling Experiment (TC4), was based in Costa Rica and Panama during July and August 2007. The NASA ER‐2, DC‐8, and WB‐57F aircraft flew 26 science flights during TC4. The ER‐2 employed 11 instruments as a remote sampling platform and satellite surrogate. The WB‐57F used 25 instruments for in situ chemical and microphysical sampling in the tropical tropopause layer (TTL). The DC‐8 used 25 instruments to sample boundary layer properties, as well as the radiation, chemistry, and microphysics of the TTL. TC4 also had numerous sonde launches, two ground‐based radars, and a ground‐based chemical and microphysical sampling site. The major goal of TC4 was to better understand the role that the TTL plays in the Earth's climate and atmospheric chemistry by combining in situ and remotely sensed data from the ground, balloons, and aircraft with data from NASA satellites. Significant progress was made in understanding the microphysical and radiative properties of anvils and thin cirrus. Numerous measurements were made of the humidity and chemistry of the tropical atmosphere from the boundary layer to the lower stratosphere. Insight was also gained into convective transport between the ground and the TTL, and into transport mechanisms across the TTL. New methods were refined and extended to all the NASA aircraft for real‐time location relative to meteorological features. The ability to change flight patterns in response to aircraft observations relayed to the ground allowed the three aircraft to target phenomena of interest in an efficient, well‐coordinated manner.
The Cosmos 1887 biosatellite carried 10 male rats and 2 rhesus monkeys on its 12.5-day mission. Upon re-entry the Vostok vehicle overshot the designated landing site, which resulted in fasting of the animals for 42 h, exposure to cage temperatures of 12-15 degrees C, and 2 days delay in death of the rats. No overt untoward effects of the delayed recovery were apparent. Tissues from the rats were harvested by Soviet scientists, appropriately preserved, and provided to U.S. investigators. Flight rats grew more slowly and had larger adrenal glands than earth gravity controls. Analysis of plasma revealed increased concentrations of hepatic alkaline phosphatase, glucose, urea nitrogen, and creatinine in flight rats. In contrast, electrolytes, total protein, albumin, corticosterone, prolactin, and immunoreactive growth hormone levels were unchanged. However, testosterone concentration was marginally decreased after flight and thyroid hormone levels were suggestive of reduced thyroid function. Due to the possible effects of reentry and the delay in recovery of the animals, it is not clear what relationship postflight levels of plasma constituents bear to their concentrations in flight.
The purpose of this study was to test the hypothesis that exposure to short-term microgravity or long-term hindlimb unloading induces cardiac atrophy in male Sprague-Dawley rats. For the microgravity study, rats were subdivided into four groups: preflight (PF, n = 12); flight (Fl, n = 7); flight cage simulation (Sim, n = 6), and vivarium control (Viv, n = 7). Animals in the Fl group were exposed to 7 days of microgravity during the Spacelab 3 mission. Animals in the hindlimb-unloading study were subdivided into three groups: control (Con, n = 20), 7-day hindlimb-unloaded (7HU, n = 10), and 28-day hindlimb-unloaded (28HU, n = 19). Heart mass was unchanged in adult animals exposed to 7 days of actual microgravity (PF 1.33 +/- 0.03 g; Fl 1.32 +/- 0.02 g; Sim 1.28 +/- 0.04 g; Viv 1.35 +/- 0.04 g). Similarly, heart mass was unaltered with hindlimb unloading (Con 1.40 +/- 0.04 g; 7HU 1.35 +/- 0.06 g; 28HU 1.42 +/- 0.03 g). Hindlimb unloading also had no effect on the peak rate of rise in left ventricular pressure, an estimate of myocardial contractility (Con 8,055 +/- 385 mmHg/s; 28HU 8,545 +/- 755 mmHg/s). These data suggest that cardiac atrophy does not occur after short-term exposure to microgravity and that neither short- nor long-term simulated microgravity alters cardiac mass or function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.