We investigated a method of baking bread from rice flour without the use of thickeners such as gluten or polysaccharides. Rice flours with different crystallinities were prepared by a shear and heat milling machine. The dynamic viscoelasticity of the resulting rice flour batters was measured and bread was baked from these batters.
Rice flour is produced by various methods for use in the food industry, but little is known about how the structure of starch is affected during rice flour production. In this study, the crystallinity, thermal properties, and structure of starch in rice flour were investigated after treatment with a shearing and heat milling machine (SHMM) at different temperatures (10–150 °C). Both the crystallinity and gelatinization enthalpy of starch showed an inverse relationship with the treatment temperature; rice flour treated with the SHMM at higher temperatures showed lower crystallinity and gelatinization enthalpy than that treated at lower temperatures. Next, the structure of undegraded starch in the SHMM-treated rice flour was analyzed by gel permeation chromatography. A significant reduction in the molecular weight of amylopectin was observed at high treatment temperatures. Chain length distribution analysis showed that the proportion of long chains (degree of polymerization (DP) > 30) in rice flour decreased at temperatures ≥ 30 °C. By contrast, the molecular weight of amylose did not decrease. In summary, the SHMM treatment of rice flour at high temperatures resulted in starch gelatinization, and the amylopectin molecular weight decreased independently, due to the cleavage of amorphous regions connecting the amylopectin clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.