Aim: To assess relationships between functional changes in visual field and structural changes in advanced open-angle glaucoma (OAG) found using spectral-domain optical coherence tomography (SD-OCT). Methods: Thirty-one eyes of 25 patients with OAG were included in this study. Besides the routine ophthalmological exam the patients underwent standard automated perimetry (SAP) (Humphrey Field Analyzer) and SD-OCT (RTVue–100) performed within 6 months. The global perimetric indices in the study group were as follows: mean deviation (MD) 12.33±6.18 dB and pattern standard deviation (PSD) 9.17±3.41 dB. The relationship between OCT measurements and MD and PSD was evaluated by correlation analysis (Pearson’s correlation coefficient) and regression analysis (linear and nonlinear regression models). Results: Thickness measurements of the lower halves of ganglion cell complex (GCC) and retinal nerve fiber layer by two scanning protocols (ONH and 3.45) showed these to be thinner than the upper halves, but the difference failed to reach statistical significance. The correlations between global indices MD/PSD and most of the analysed quantitative OCT measurements were moderate (r in the range between 0.3 and 0.6). The correlation between MD and GCC showed nonlinear cubic regression (R2=0.417, P=0.004). Good correlation was found between MD and GLV (R2=0.383; P=0.008). Linear regression (P<0.05) was found only between MD and Cup area (R2=0.175, P=0.024) and between MD and RNFL by 3.45 protocol (R2=0.131, P=0.045). Conclusion: Nonlinear regressive models appear to be more appropriate in the assessment of the correlations between functional and structural changes in eyes with advanced glaucoma. The correlations we found were moderate.
Purpose: To evaluate the measurements of the peripapillary retinal neurofiber layers (RNFL) and the ganglion cells complex (GCC) obtained by Optical Coherence Tomography (OCT) in eyes with preperimetric open-angle glaucoma. Methods: One hundred and forty eyes of 75 patients (21 male and 54 female), 80 eyes with preperimetric glaucoma (PPG) (45 patients) and 60 normal eyes (30 subjects) were included in this study. Automated visual field examination was done to all participants using Humphrey field analyzer, program 30-2. The GCC thickness and peripapillary RNFL thickness were measured using RTVue-100 (Optivue, Inc., Fremont, CA). The areas under ROC (receiver operating characteristic)-curves (AUCs) were defined for all examined GCC and RNFL parameters. Results: GCC of the eyes with PPG was significantly thinner than GCC of the normal eyes: (89.58 vs 97.82 microns, P < 0.001). There was no significant difference between upper and lower GCC halves in both study groups. We found a reduction of RNFL thickness in glaucomatous eyes (P < 0.001) compared with normals. AUCs for GCC parameters in eyes with PPG were larger than AUCs for RNFL parameters. Conclusion: Our study showed that the peripapillary RNFL and GCC thickness are lower in preperimetric glaucoma than in normal eyes. Despite the fact that GCC measurements (especially GLV) show better AUC than peripapillary measurements, we suggest that two scans (GCC and ONH) put together are superior in detecting early structural glaucomatous damage. Several diagnostic parameters should be considered in the clinical diagnosis of preperimetric glaucoma.
Confocal microscopy is a method which has been increasingly used over the last decade in the study of the anterior ocular surface. The method allows testing and in vivo high resolution imaging of the structures of the anterior eye segment, at a cellular level, which is close to the histological examination of tissues. The data provided by this method allow for a better understanding of both the functional and pathological processes occurring in the anterior ocular surface not only for scientific purposes but also in clinical practice. The aim of the present work is to summarize the current knowledge and applications of confocal microscopy of the anterior ocular surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.