ABSTRACTStreptococcus pneumoniaepneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate. In this study, we assessed the protective efficacy of our novel PlyD1 detoxified PLY variant and investigated its underlying mechanism of protection. Results have shown that PlyD1 immunization protected mice against lethal intranasal (i.n.) challenge with pneumococci and lung injury mediated by PLY challenge. Protection was associated with PlyD1-specific IgG titers andin vitroneutralization titers. Pretreatment of PLY with PlyD1-specific rat polyclonal antiserum prior to i.n. delivery of toxin reduced PLY-mediated lung lesions, interleukin-6 (IL-6) production, and neutrophil infiltration into lungs, indicating that protection from lung lesions induced by PLY is antibody mediated. Preincubation of PLY with a neutralizing monoclonal PLY antibody also specifically reduced the cytotoxic effects of PLY after i.n. inoculation in comparison to nonneutralizing monoclonal antibodies. These results indicate that the induction of neutralizing antibodies against PLY can contribute to protection against bacterial pneumonia by preventing the development of PLY-induced lung lesions and inflammation. Our detoxified PlyD1 antigen elicits such PLY neutralizing antibodies, thus serving as a candidate vaccine antigen for the prevention of pneumococcal pneumonia.
Currently marketed Streptococcus pneumoniae vaccines are based on polysaccharide capsular antigens from the most common strains. Pneumococcal histidine triad protein D (PhtD) is a conserved surface protein that is being evaluated as a candidate for a vaccine with improved serotype coverage. Here, we measured the functional activity of human anti-PhtD antibodies in a passive protection model wherein mice were challenged with a lethal dose of S. pneumoniae by intravenous injection. This functional activity was compared with anti-PhtD antibody concentrations measured by enzyme-linked immunosorbent assay (ELISA) to estimate the 50% protective dose (ED50). Anti-PhtD antibodies affinity purified from pooled normal human sera passively protected mice with an ED50 of 1679 ELISA units/ml (95% confidence interval, 1420–1946). Sera from subjects injected with aluminum-adjuvanted PhtD in a phase I trial had similar activity per unit of antibody (ED50 = 1331 ELISA units/ml [95% confidence interval, 762–2038]). Vaccine-induced activity in the passive protection model was blocked by pre-incubation with recombinant PhtD but not by a control S. pneumoniae antigen (LytB). These results show that human anti-PhtD antibodies, whether naturally acquired or induced by the PhtD candidate vaccine, are functional. This supports the development of the PhtD candidate as part of a broadly protective pneumococcal vaccine.
We have developed an accurate, precise and stability-indicating flow cytometry (FC) based assay to directly measure antigenicity of H4 protein (also known as HyVac4) in a vaccine formulation of H4-IC31, without desorbing the H4 protein from the IC31 adjuvant. This method involves immuno-staining of H4-IC31 complex with anti-H4 monoclonal antibodies (mAbs) followed by FC analysis. The assay is not only able to consistently measure H4 antigenicity levels in H4-IC31 stored under normal condition at 2-8°C, but also able to detect changes in H4 antigenicity after H4-IC31 undergoes heat stress or freeze-thawing. In addition, the FC method is able to characterize particle morphology while measuring antigenicity. The biological relevance of the changes in H4 antigenicity detected by the FC assay was supported by an in vitro cell based functional assay using human PBMCs to measure IFN-gamma (IFN-γ) secretion upon re-stimulation with H4-IC31. Our results show that the FC based antigenicity assay can efficiently monitor the biological and physicochemical properties of H4-IC31 and is an indicator for adjuvanted vaccine product stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.