Prokaryotic adaptive immunity is established against mobile genetic elements (MGEs) by ‘naïve adaptation’ when DNA fragments from a newly encountered MGE are integrated into CRISPR–Cas systems. In Escherichia coli, DNA integration catalyzed by Cas1–Cas2 integrase is well understood in mechanistic and structural detail but much less is known about events prior to integration that generate DNA for capture by Cas1–Cas2. Naïve adaptation in E. coli is thought to depend on the DNA helicase-nuclease RecBCD for generating DNA fragments for capture by Cas1–Cas2. The genetics presented here show that naïve adaptation does not require RecBCD nuclease activity but that helicase activity may be important. RecA loading by RecBCD inhibits adaptation explaining previously observed adaptation phenotypes that implicated RecBCD nuclease activity. Genetic analysis of other E. coli nucleases and naïve adaptation revealed that 5′ ssDNA tailed DNA molecules promote new spacer acquisition. We show that purified E. coli Cas1–Cas2 complex binds to and nicks 5′ ssDNA tailed duplexes and propose that E. coli Cas1–Cas2 nuclease activity on such DNA structures supports naïve adaptation.
Cas3 has essential functions in CRISPR immunity but its other activities and roles, in vitro and in cells, are less widely known. We offer a concise review of the latest understanding and questions arising from studies of Cas3 mechanism during CRISPR immunity, and highlight recent attempts at using Cas3 for genetic editing. We then spotlight involvement of Cas3 in other aspects of cell biology, for which understanding is lacking—these focus on CRISPR systems as regulators of cellular processes in addition to defense against mobile genetic elements.
Cas3 nuclease-helicase is part of CRISPR immunity systems in many bacteria and archaea. In type I CRISPR, Cas3 nuclease degrades invader DNA that has been base-paired to crRNA as an R-loop within a "Cascade" complex. An R-loop is a DNA-RNA hybrid that includes a displaced single-strand DNA loop. Purified Cas3 from E. coli and the archaeon M. thermautrophicus can process R-loops without DNA/RNA sequence specificity and without Cascade. This has potential to affect other aspects of microbial biology that involve R-loops. Regulatory RNAs and host cell proteins modulate replication of ColE1 plasmids (e.g., pUC) from R-loop primers. We observed that Cas3 could override endogenous control of a ColE1 replicon, stimulating uncontrolled ("runaway") replication and resulting in much higher plasmid yields. This effect was absent when using helicase-defective Cas3 (Cas3 (K320L) ) or a non-ColE1 plasmid, and was dependent on RNaseHI. Cas3 also promoted formation of plasmid multimers or concatemers, a phenotype consistent with deregulated ColE1 replication and typical of cells lacking RNaseHI. These effects of Cas3 on ColE1 plasmids are inconsistent with it unwinding R-loops in vivo, at least in this assay. We discuss a model of how Cas3 might be able to regulate RNA molecules in vivo, unless it is targeted to CRISPR defense by Cascade, or kept in check by RecG and RNaseHI.
The clustered regularly interspersed short palindromic repeats (CRISPR)-Cas system constitutes an adaptive immunity system of prokaryotes against mobile genetic elements using a CRISPR RNA (crRNA)-mediated interference mechanism. In Type I CRISPR-Cas systems, crRNA guided by a Cascade complex recognises the matching target DNA and promotes an R-loop formation, RNA-DNA hybrid. The helicase-nuclease Cas3 protein is then recruited to the Cascade/R-loop complex where it nicks and degrades DNA. The Cas3 activity in CRISPR-Cas immunity is reduced in Δhns cells at 37°C for unknown reasons. Cas3 can also influence regulation of plasmid replication and promote uncontrolled (‘runaway’) replication of ColE1 plasmids independently of other CRISPR-Cas components, requiring only its helicase activity. In this work we wanted to test whether Cas3-stimulated uncontrolled plasmid replication is affected by the temperature in Δhns and/or ΔhtpG mutants. We found that Cas3-stimulated uncontrolled plasmid replication occurs only at 37°C, irrespective of the genotype of the analysed mutants, and dependent on Cas3 helicase function. We also found that plasmid replication was strongly reduced by the hns mutation at 30°C and that Cas3 could interfere with T4 phage replication at both incubation temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.