Mitochondrial dysfunction during acute metabolic crises is considered an important pathomechanism in inherited disorders of propionate metabolism, i.e. propionic and methylmalonic acidurias. Biochemically, these disorders are characterized by accumulation of propionyl-CoA and metabolites of alternative propionate oxidation. In the present study, we demonstrate uncompetitive inhibition of PDHc (pyruvate dehydrogenase complex) by propionyl-CoA in purified porcine enzyme and in submitochondrial particles from bovine heart being in the same range as the inhibition induced by acetyl-CoA, the physiological product and known inhibitor of PDHc. Evaluation of similar monocarboxylic CoA esters showed a chain-length specificity for PDHc inhibition. In contrast with CoA esters, non-esterified fatty acids did not inhibit PDHc activity. In addition to PDHc inhibition, analysis of respiratory chain and tricarboxylic acid cycle enzymes also revealed an inhibition by propionyl-CoA on respiratory chain complex III and alpha-ketoglutarate dehydrogenase complex. To test whether impairment of mitochondrial energy metabolism is involved in the pathogenesis of propionic aciduria, we performed a thorough bioenergetic analysis in muscle biopsy specimens of two patients. In line with the in vitro results, oxidative phosphorylation was severely compromised in both patients. Furthermore, expression of respiratory chain complexes I-IV and the amount of mitochondrial DNA were strongly decreased, and ultrastructural mitochondrial abnormalities were found, highlighting severe mitochondrial dysfunction. In conclusion, our results favour the hypothesis that toxic metabolites, in particular propionyl-CoA, are involved in the pathogenesis of inherited disorders of propionate metabolism, sharing mechanistic similarities with propionate toxicity in micro-organisms.
Methylmalonic acidurias are biochemically characterized by an accumulation of methylmalonic acid and alternative metabolites. An impairment of energy metabolism plays a key role in the pathophysiology of this disease, resulting in neurodegeneration of the basal ganglia and renal failure. It has become the subject of intense debates whether methylmalonic acid is the major toxin, inhibiting respiratory chain complex II. To elucidate whether methylmalonic acid is a respiratory chain inhibitor, we used spectrophotometric analysis of complex II activity in submitochondrial particles from bovine heart, radiometric analysis of 14 C-labeled substrates (pyruvate, malate, succinate), and analysis of ATP production in muscle from mice. Methylmalonic acid revealed no direct effects on the respiratory chain function, i.e. on single electron transferring complexes I-IV, ATPase, and mitochondrial transporters. However, we identified a variety of variables that must be carefully controlled to avoid an artificial inhibition of complex II activity. In summary, the study verifies our hypothesis that methylmalonic acid is not the major toxic metabolite in methylmalonic acidurias. Inhibition of respiratory chain and tricarboxylic acid cycle is most likely induced by synergistically acting alternative metabolites, in particular 2-methylcitric acid, malonic acid, and propionyl-CoA.
Inherited deficiency of glutaryl-CoA dehydrogenase results in an accumulation of glutaryl-CoA, glutaric, and 3-hydroxyglutaric acids. If untreated, most patients suffer an acute encephalopathic crisis and, subsequently, acute striatal damage being precipitated by febrile infectious diseases during a vulnerable period of brain development (age 3 and 36 months). It has been suggested before that some of these organic acids may induce excitotoxic cell damage, however, the relevance of bioenergetic impairment is not yet understood. The major aim of our study was to investigate respiratory chain, tricarboxylic acid cycle, and fatty acid oxidation in this disease using purified single enzymes and tissue homogenates from Gcdh-deficient and wild-type mice. In purified enzymes, glutaryl-CoA but not glutaric or 3-hydroxyglutaric induced an uncompetitive inhibition of ␣-ketoglutarate dehydrogenase complex activity. Notably, reduced activity of ␣-ketoglutarate dehydrogenase activity has recently been demonstrated in other neurodegenerative diseases, such as Alzheimer, Parkinson, and Huntington diseases. In contrast to ␣-ketoglutarate dehydrogenase complex, no direct inhibition of glutaryl-CoA, glutaric acid, and 3-hydroxyglutaric acid was found in other enzymes tested. In Gcdh-deficient mice, respiratory chain and tricarboxylic acid activities remained widely unaffected, virtually excluding regulatory changes in these enzymes. However, hepatic activity of very long-chain acyl-CoA dehydrogenase was decreased and concentrations of long-chain acylcarnitines increased in the bile of these mice, which suggested disturbed oxidation of long-chain fatty acids. In conclusion, our results demonstrate that bioenergetic impairment may play an important role in the pathomechanisms underlying neurodegenerative changes in glutaryl-CoA dehydrogenase deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.