Recommender systems play an important role in e-commerce websites as they improve the customer journey by helping the users find what they want at the right moment. In this paper, we focus on identifying a complementary relationship between the products of an e-commerce company. We propose a content-based recommender system for detecting complementary products, using Siamese Neural Networks (SNN). To this end, we implement and compare two different models: Siamese Convolutional Neural Network (CNN) and Siamese Long Short-Term Memory (LSTM). Moreover, we propose an extension of the SNN approach to handling millions of products in a matter of seconds, and we reduce the training time complexity by half. In the experiments, we show that Siamese LSTM can predict complementary products with an accuracy of ∼ 85% using only the product titles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.