Fluorescent switches based on spirocyclic zwitterionic Meisenheimer (SZMC) complexes are stimuli-responsive organic molecules with application in a variety of areas. To expand their functionality, novel switching mechanisms are herein reported for these systems: (a) acid- and redox-triggered formation of an additional protonation state with distinct optical properties, and (b) solvent-induced fluorescence modulation. We demonstrate that these new features, which enable both multistimuli and multistate operation of SZMC switches, can be exploited in the preparation of smart organic materials: wide-range pH optical probes, electrochromic and electrofluorochromic films, and polymer-based fluorescent detectors of organic liquids.
Stable zwitterionic spirocyclic Meisenheimer compounds were synthesized using a one-step reaction between picric acid and diisopropyl (ZW1) or dicyclohexyl (ZW3) carbodiimide. A solution of these compounds displays intense orange fluorescence upon UV or visible light excitation, which can be quenched or “turned-off” by adding a mole equivalent amount of F− or CN− ions in acetonitrile. Fluorescence is not quenched in the presence of other ions such as Cl−, Br−, I−, NO2−, NO3−, or H2PO4−. These compounds can therefore be utilized as practical colorimetric and fluorescent probes for monitoring the presence of F− or CN− anions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.