Rift Valley fever (RVF) is a vector-borne viral disease widespread in Africa. The primary cycle involves mosquitoes and wild and domestic ruminant hosts. Humans are usually contaminated after contact with infected ruminants. As many environmental, agricultural, epidemiological, and anthropogenic factors are implicated in RVF spread, the multidisciplinary One Health approach was needed to identify the drivers of RVF epidemics in Madagascar. We examined the environmental patterns associated with these epidemics, comparing human and ruminant serological data with environmental and cattle-trade data. In contrast to East Africa, environmental drivers did not trigger the epidemics: They only modulated local Rift Valley fever virus (RVFV) transmission in ruminants. Instead, RVFV was introduced through ruminant trade and subsequent movement of cattle between trade hubs caused its long-distance spread within the country. Contact with cattle brought in from infected districts was associated with higher infection risk in slaughterhouse workers. The finding that anthropogenic rather than environmental factors are the main drivers of RVF infection in humans can be used to design better prevention and early detection in the case of RVF resurgence in the region.vector-borne infection | zoonosis | El Niño | cattle trade | One Health
Rift Valley fever virus (RVFV) is an arthropod-borne phlebovirus reported to be circulating in most parts of Africa. Since 2009, RVFV has been suspected of continuously circulating in the Union of Comoros. To estimate the incidence of RVFV antibody acquisition in the Comorian ruminant population, 191 young goats and cattle were selected in six distinct zones and sampled periodically from April 2010 to August 2011. We found an estimated incidence of RVFV antibody acquisition of 17.5% (95% confidence interval (CI): [8.9–26.1]) with a significant difference between islands (8.2% in Grande Comore, 72.3% in Moheli and 5.8% in Anjouan). Simultaneously, a longitudinal entomological survey was conducted and ruminant trade-related information was collected. No RVFV RNA was detected out of the 1,568 blood-sucking caught insects, including three potential vectors of RVFV mosquito species. Our trade survey suggests that there is a continuous flow of live animals from eastern Africa to the Union of Comoros and movements of ruminants between the three Comoro islands. Finally, a cross-sectional study was performed in August 2011 at the end of the follow-up. We found an estimated RVFV antibody prevalence of 19.3% (95% CI: [15.6%–23.0%]). Our findings suggest a complex RVFV epidemiological cycle in the Union of Comoros with probable inter-islands differences in RVFV circulation patterns. Moheli, and potentially Anjouan, appear to be acting as endemic reservoir of infection whereas RVFV persistence in Grande Comore could be correlated with trade in live animals with the eastern coast of Africa. More data are needed to estimate the real impact of the disease on human health and on the national economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.