In this paper the model of infection diseases by Marchuk is considered. Mathematical questions which are important in its study are discussed. Among them there are stability of stationary points, construction of the Cauchy matrices of linearized models, estimates of solutions. The novelty we propose is in a distributed feedback control which affects the antibody concentration. We use this control in the form of an integral term and come to the analysis of nonlinear integro-differential systems. New methods for the study of stability of linearized integro–differential systems describing the model of infection diseases are proposed. Explicit conditions of the exponential stability of the stationary points characterizing the state of the healthy body are obtained. The method of the paper is based on the symmetry properties of the Cauchy matrices which allow us their construction.
The Marchuk model of infectious diseases is considered. Distributed control to make convergence to stationary point faster is proposed. Medically, this means that treatment time can be essentially reduced. Decreasing the concentration of antigen, this control facilitates the patient’s condition and gives a certain new idea of treating the disease. Our approach involves the analysis of integro-differential equations. The idea of reducing the system of integro-differential equations to a system of ordinary differential equations is used. The final results are given in the form of simple inequalities on the parameters. The results of numerical calculations of simulation models and data comparison in the case of using distributive control and in its absence are given.
In this paper we propose a method for stability studies of functional differential systems. The idea of our method is to reduce the analysis of an n-dimensional system to one for an (n + m)-dimensional system, where m is a natural number, to obtain stability and then to come back and make conclusions on the stability of the given n-dimensional system. As an example, a model describing testosterone by distributed inputs feedback control is considered. The aim of the regulation is to hold testosterone concentration above an appropriate level. The feedback control with integral term is proposed. We have to increase the testosterone level to the normal one. The control we proposed could destroy the stability of the model. That is why we have to choose the parameters of our distributed control, namely a dosage or intensity of assimilation of a medicine in a human body in such a form that the stability of our system is preserved. Thus the problem of regulation of testosterone level leads us to the stability analysis of the functional differential system describing a connection between the concentrations of hormones (GnRH), (LH), and testosterone (Te). Constructing the system, we discard the connections which seem nonessential. To estimate the effect of these connections is an important problem. We construct the Cauchy matrix of integro-differential system to estimate this influence.
In this paper we deal the model of infection diseases, constructed by G.I.Marchuk. We add distributed control to one of the equations describing this model, and obtain numerical solutions of this model. Several numerical solutions demonstrate advances of distributed control.
We consider mathematical models of infection diseases built by G.I. Marchuk in his well known book on immunology. These models are in the form of systems of ordinary delay differential equations. We add a distributed control in one of the equations describing the dynamics of the antibody concentration rate. Distributed control looks here naturally since the change of this concentration rather depends on the corresponding average value of the difference of the current and normal antibody concentrations on the time interval than on their difference at the point t only. Choosing this control in a corresponding form, we propose some ideas of the stabilization in the cases, where other methods do not work. The main idea is to reduce the stability analysis of a given integrodifferential system of the order n, to one of the auxiliary system of the order n + m, where m is a natural number, which is easily for this analysis in a corresponding sense. Results for this auxiliary systems allow us to make conclusions for the given integro-differential system of the order n. We concentrate our attempts in the analysis of the distributed control in an integral form. An idea of reducing integro-differential systems to systems of ordinary differential equations is developed. We present results about the exponential stability of stationary points of integro-differential systems, using the method based on the presentation of solution with the help of Cauchy matrix. Various properties of integro-differential systems are studied by this way. Methods of general theory of functional differential equations developed by N.V.Azbelev and his followers are used. One of them is the Azbelev W -transform. We propose ideas allowing to achieve faster convergence to stationary point using a distributed control. We obtain estimates of solutions, using estimates of the Cauchy matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.