Objects in the natural world possess different visual attributes, including shape, colour, surface texture and motion. Previous perceptual studies have assumed that the brain analyses the colour of a surface independently of its three-dimensional shape and viewing geometry, although there are neural connections between colour and two-dimensional form processing early in the visual pathway. Here we show that colour perception is strongly influenced by three-dimensional shape perception in a novel, chromatic version of the Mach Card--a concave folded card with one side made of magenta paper and the other of white paper. The light reflected from the magenta paper casts a pinkish glow on the white side. The perceived colour of the white side changes from pale pink to deep magenta when the perceived shape of the card flips from concave to convex. The effect demonstrates that the human visual system incorporates knowledge of mutual illumination-the physics of light reflection between surfaces--at an early stage in colour perception.
There has been an intense discussion among the public about the colour of a dress, shown in a picture posted originally on Tumblr (http://swiked.tumblr.com/post/112073818575/guys-please-help-me-is-this-dress-white-and; accessed on 10:56 am GMT on Tue 24 Mar 2015). Some people argue that they see a white dress with golden lace, while others describe the dress as blue with black lace. Here we show that the question "what colour is the dress?" has more than two answers. In fact, there is a continuum of colour percepts across different observers. We measured colour matches on a calibrated screen for two groups of observers who had reported different percepts of the dress. Surprisingly, differences between the two groups arose mainly from differences in lightness, rather than chromaticity of the colours they adjusted to match the dress. We speculate that the ambiguity arises in the case of this particular image because the distribution of colours within the dress closely matches the distribution of natural daylights. This makes it more difficult to disambiguate illumination changes from those in reflectance.
When a planar object is rotated with respect to a directional light source, the reflected luminance changes. If surface lightness is to be a reliable guide to surface identity, observers must compensate for such changes. To the extent they do, observers are said to be lightness constant. We report data from a lightness matching task that assesses lightness constancy with respect to changes in object slant. On each trial, observers viewed an achromatic standard object and indicated the best match from a palette of 36 grayscale samples. The standard object and the palette were visible simultaneously within an experimental chamber. The chamber illumination was provided from above by a theater stage lamp. The standard objects were uniformly-painted flat cards. Different groups of naive observers made matches under two sets of instructions. In the Neutral Instructions, observers were asked to match the appearance of the standard and palette sample. In the Paint Instructions, observers were asked to choose the palette sample that was painted the same as the standard. Several broad conclusions may be drawn from the results. First, data for most observers were neither luminance matches nor lightness constant matches. Second, there were large and reliable individual differences. To characterize these, a constancy index was obtained for each observer by comparing how well the data were accounted for by both luminance matching and lightness constancy. The index could take on values between 0 (luminance matching) and 1 (lightness constancy). Individual observer indices ranged between 0.17 and 0.63 with mean 0.40 and median 0.40. An auxiliary slant-matching experiment rules out variation in perceived slant as the source of the individual variability. Third, the effect of instructions was small compared to the inter-observer variability. Implications of the data for models of lightness perception are discussed.
In the companion study (C. Ripamonti et al., 2004), we present data that measure the effect of surface slant on perceived lightness. Observers are neither perfectly lightness constant nor luminance matchers, and there is considerable individual variation in performance. This work develops a parametric model that accounts for how each observer's lightness matches vary as a function of surface slant. The model is derived from consideration of an inverse optics calculation that could achieve constancy. The inverse optics calculation begins with parameters that describe the illumination geometry. If these parameters match those of the physical scene, the calculation achieves constancy. Deviations in the model's parameters from those of the scene predict deviations from constancy. We used numerical search to fit the model to each observer's data. The model accounts for the diverse range of results seen in the experimental data in a unified manner, and examination of its parameters allows interpretation of the data that goes beyond what is possible with the raw data alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.