Bacillus thuringiensis subsp. israelensis has been used to control the Aedes aegypti (Diptera: Culicidae) mosquito larvae, the vector of virus diseases such as dengue, Chikungunya and Zika fever, which have become a major public health problem in Brazil and other tropical countries since the climate favors the proliferation and development of the transmitting vector. Because B. thuringiensis has shown potential for controlling insects of the Diptera order, this work aimed at testing the Bacillus thuringiensis subsp. thuringiensis strain T01-328 and its proteins Cry2Aa and Cry2Ab for control A. aegypti and at comparing the results to the B. thuringiensis subsp. israelensis specific dipteran strain. To this end, bioassays using spore-crystal of both strains, and Cry2Aa and Cry2Ab proteins from the heterologous expression in Escherichia coli, were performed against A. aegypti larvae. The results showed that the B. thuringiensis thuringiensis T01-328 has insecticidal activity against the larvae, but it is less toxic than B. thuringiensis subsp. israelensis. Cry2Aa and Cry2Ab proteins expressed heterologously were effective for controlling A. aegypti larvae. Therefore, the results indicate that the Cry2Aa and Cry2Ab proteins of the B. thuringiensis thuringiensis T01-328 can be used as an alternative to assist in the control of A. aegypti.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.