Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat> 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat ~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.
Abstract:There is an increasing interest in enzymes that catalyze the hydroxylation of naphthalene under mild conditions and with minimal requirements. To address this challenge, an extracellular fungal aromatic peroxygenase with mono(per)oxygenase activity was engineered to selectively convert naphthalene into 1-naphthol. Mutant libraries constructed by random mutagenesis and DNA recombination were screened for peroxygenase activity on naphthalene while quenching the undesired peroxidative activity on 1-naphthol (one-electron oxidation). The resulting double mutant (G241D-R257K) of this process was characterized biochemically and computationally. The conformational changes produced by directed evolution improved the substrate´s catalytic position. Powered exclusively by catalytic concentrations of H2O2, this soluble and stable biocatalyst has total turnover numbers of 50,000, with high regioselectivity (97%) and reduced peroxidative activity.
Propranolol is a widely used beta-blocker that is metabolized by human liver P450 monooxygenases into equipotent hydroxylated human drug metabolites (HDMs). It is paramount for the pharmaceutical industry to evaluate the toxicity and activity of these metabolites, but unfortunately, their synthesis has hitherto involved the use of severe conditions, with poor reaction yields and unwanted byproducts. Unspecific peroxygenases (UPOs) catalyze the selective oxyfunctionalization of C−H bonds, and they are of particular interest in synthetic organic chemistry. Here, we describe the engineering of UPO from Agrocybe aegerita for the efficient synthesis of 5′-hydroxypropranolol (5′-OHP). We employed a structure-guided evolution approach combined with computational analysis, with the aim of avoiding unwanted phenoxyl radical coupling without having to dope the reaction with radical scavengers. The evolved biocatalyst showed a catalytic efficiency enhanced by 2 orders of magnitude and 99% regioselectivity for the synthesis of 5′-OHP. When the UPO mutant was combined with an H 2 O 2 in situ generation system using methanol as sacrificial electron donor, total turnover numbers of up to 264 000 were achieved, offering a cost-effective and readily scalable method to rapidly prepare 5′-OHP.
The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H 2 O 2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106 -118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.