Aims/hypothesis Proinflammatory cytokines contribute to beta cell damage in type 1 diabetes in part through activation of endoplasmic reticulum (ER) stress. In rat beta cells, cytokineinduced ER stress involves NO production and consequent inhibition of the ER Ca 2+ transporting ATPase sarco/ endoplasmic reticulum Ca 2+ pump 2 (SERCA2B). However, the mechanisms by which cytokines induce ER stress and apoptosis in mouse and human pancreatic beta cells remain unclear. The purpose of this study is to elucidate the role of ER stress on cytokine-induced beta cell apoptosis in these three species and thus solve ongoing controversies in the field. Methods Rat and mouse insulin-producing cells, human pancreatic islets and human EndoC-βH1 cells were exposed to the cytokines IL-1β, TNF-α and IFN-γ, with or without NO inhibition. A global comparison of cytokine-modulated gene expression in human, mouse and rat beta cells was also performed. The chemical chaperone tauroursodeoxycholic acid (TUDCA) and suppression of C/EBP homologous protein (CHOP) were used to assess the role of ER stress in cytokineinduced apoptosis of human beta cells. Results NO plays a key role in cytokine-induced ER stress in rat islets, but not in mouse or human islets. Bioinformatics analysis indicated greater similarity between human and mouse than between human and rat global gene expression after cytokine exposure. The chemical chaperone TUDCA and suppression of CHOP or c-Jun N-terminal kinase (JNK) protected human beta cells against cytokine-induced apoptosis. Conclusions/interpretation These observations clarify previous results that were discrepant owing to the use of islets from different species, and confirm that cytokine-induced ER stress contributes to human beta cell death, at least in part via JNK activation.
OBJECTIVEThe reversible attachment of small ubiquitin-like modifier (SUMO) proteins controls target localization and function. We examined an acute role for the SUMOylation pathway in downstream events mediating insulin secretion.RESEARCH DESIGN AND METHODSWe studied islets and β-cells from mice and human donors, as well as INS-1 832/13 cells. Insulin secretion, intracellular Ca2+, and β-cell exocytosis were monitored after manipulation of the SUMOylation machinery. Granule localization was imaged by total internal reflection fluorescence and electron microscopy; immunoprecipitation and Western blotting were used to examine the soluble NSF attachment receptor (SNARE) complex formation and SUMO1 interaction with synaptotagmin VII.RESULTSSUMO1 impairs glucose-stimulated insulin secretion by blunting the β-cell exocytotic response to Ca2+. The effect of SUMO1 to impair insulin secretion and β-cell exocytosis is rapid and does not require altered gene expression or insulin content, is downstream of granule docking at the plasma membrane, and is dependent on SUMO-conjugation because the deSUMOylating enzyme, sentrin/SUMO-specific protease (SENP)-1, rescues exocytosis. SUMO1 coimmunoprecipitates with the Ca2+ sensor synaptotagmin VII, and this is transiently lost upon glucose stimulation. SENP1 overexpression also disrupts the association of SUMO1 with synaptotagmin VII and mimics the effect of glucose to enhance exocytosis. Conversely, SENP1 knockdown impairs exocytosis at stimulatory glucose levels and blunts glucose-dependent insulin secretion from mouse and human islets.CONCLUSIONSSUMOylation acutely regulates insulin secretion by the direct and reversible inhibition of β-cell exocytosis in response to intracellular Ca2+ elevation. The SUMO protease, SENP1, is required for glucose-dependent insulin secretion.
Focal adhesion kinase (FAK) acts as an adaptor at the focal contacts serving as a junction between the extracellular matrix and actin cytoskeleton. Actin dynamics is known as a determinant step in insulin secretion. Additionally, FAK has been shown to regulate insulin signaling. To investigate the essential physiological role of FAK in pancreatic β-cells in vivo, we generated a transgenic mouse model using rat insulin promoter (RIP)–driven Cre-loxP recombination system to specifically delete FAK in pancreatic β-cells. These RIPcre+fakfl/fl mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell viability and proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with attenuated insulin/Akt (also known as protein kinase B) and extracellular signal–related kinase 1/2 signaling and increased caspase 3 activation. FAK-deficient β-cells exhibited impaired insulin secretion with normal glucose sensing and preserved Ca2+ influx in response to glucose, but a reduced number of docked insulin granules and insulin exocytosis were found, which was associated with a decrease in focal proteins, paxillin and talin, and an impairment in actin depolymerization. This study is the first to show in vivo that FAK is critical for pancreatic β-cell viability and function through regulation in insulin signaling, actin dynamics, and granule trafficking.
Glutamate is implicated in numerous metabolic and signalling functions that vary according to specific tissues. Glutamate metabolism is tightly controlled by activities of mitochondrial enzymes and transmembrane carriers, in particular glutamate dehydrogenase and mitochondrial glutamate carriers that have been identified in recent years. It is remarkable that, although glutamate-specific enzymes and transporters share similar properties in most tissues, their regulation varies greatly according to particular organs in order to achieve tissue specific functions. This is illustrated in this review when comparing glutamate handling in liver, brain, and pancreatic beta-cells. We describe the main cellular glutamate pathways and their specific functions in different tissues, ultimately contributing to the control of metabolic homeostasis at the organism level.
The SLC25 carrier family mediates solute transport across the inner mitochondrial membrane, a process that is still poorly characterized regarding both the mechanisms and proteins implicated. This study investigated mitochondrial glutamate carrier GC1 in insulin-secreting -cells. GC1 was cloned from insulin-secreting cells, and sequence analysis revealed hydropathy profile of a six-transmembrane protein, characteristic of mitochondrial solute carriers. GC1 was found to be expressed at the mRNA and protein levels in INS-1E -cells and pancreatic rat islets. Immunohistochemistry showed that GC1 was present in mitochondria, and ultrastructural analysis by electron microscopy revealed inner mitochondrial membrane localization of the transporter. Silencing of GC1 in INS-1E -cells, mediated by adenoviral delivery of short hairpin RNA, reduced mitochondrial glutamate transport by 48% (p < 0.001). Insulin secretion at basal 2.5 mM glucose and stimulated either by intermediate 7.5 mM glucose or non-nutrient 30 mM KCl was not modified by GC1 silencing. Conversely, insulin secretion stimulated with optimal 15 mM glucose was reduced by 23% (p < 0.005) in GC1 knocked down cells compared with controls. Adjunct of cell-permeant glutamate (5 mM dimethyl glutamate) fully restored the secretory response at 15 mM glucose (p < 0.005). Kinetics of insulin secretion were investigated in perifused isolated rat islets. GC1 silencing in islets inhibited the secretory response induced by 16.7 mM glucose, both during first (؊25%, p < 0.05) and second (؊33%, p < 0.05) phases. This study demonstrates that insulin-secreting cells depend on GC1 for maximal glucose response, thereby assigning a physiological function to this newly identified mitochondrial glutamate carrier.Functions of mitochondria require regulated flux of molecules across the two membranes surrounding the matrix. Mitochondrial solute carriers (SLC25) are a large family of nuclearly encoded membrane-embedded proteins that promote solute transport across the inner mitochondrial membrane (1-4).The human genome contains 48 members of the SLC25 family, among them about 30 have been identified and characterized biochemically (1,(5)(6)(7)(8). In particular, very little is known on solute carrier proteins transporting metabolites, such as glutamate. The two isoforms of the glutamate carrier GC1 and GC2 (encoded by SLC25A22 and SLC25A18, respectively) catalyze the transport of glutamate across the inner mitochondrial membrane, either by proton co-transport or in exchange for hydroxyl ions. To date, one human pathology has been associated with GC1, exhibiting a correlation between GC1 mutation and neonatal myoclonic epilepsy (9). Of interest, the high K m isoform GC1 was shown to be expressed in different tissues, especially in the brain, liver, and pancreas (10). Despite the importance of these studies, we still lack subcellular localization and demonstration of the physiological function of glutamate carriers. The elevated expression levels in the pancreas triggered our interest, ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.