Background In insect societies, queens monopolize reproduction while workers perform tasks such as brood care or foraging. Queen loss leads to ovary development and lifespan extension in workers of many ant species. However, the underlying molecular mechanisms of this phenotypic plasticity remain unclear. Recent studies highlight the importance of epigenetics in regulating plastic traits in social insects. Thus, we investigated the role of histone acetylation in regulating worker reproduction in the ant Temnothorax rugatulus. We removed queens from their colonies to induce worker fecundity, and either fed workers with chemical inhibitors of histone acetylation (C646), deacetylation (TSA), or the solvent (DMSO) as control. We monitored worker number for six weeks after which we assessed ovary development and sequenced fat body mRNA. Results Workers survived better in queenless colonies. They also developed their ovaries after queen removal in control colonies as expected, but not in colonies treated with the chemical inhibitors. Both inhibitors affected gene expression, although the inhibition of histone acetylation using C646 altered the expression of more genes with immunity, fecundity, and longevity functionalities. Interestingly, these C646-treated workers shared many upregulated genes with infertile workers from queenright colonies. We also identified one gene with antioxidant properties commonly downregulated in infertile workers from queenright colonies and both C646 and TSA-treated workers from queenless colonies. Conclusion Our results suggest that histone acetylation is involved in the molecular regulation of worker reproduction, and thus point to an important role of histone modifications in modulating phenotypic plasticity of life history traits in social insects.
In insect societies, the presence of reproductives or eggs has been shown to shape several biological traits in the colony members. Social interactions are one of these traits that involve modification of the communication system of the entire colony. Many studies described the role of chemical compounds and dominance behaviors in the presence of reproductive but vibratory behaviors received very few investigations. Yet, vibratory behaviors are ideal candidates, particularly for subterranean species like termites, as they could be quickly transmitted through the substrate and could be very diversified (origin, modulation). Here, we investigated whether the presence of reproductives/eggs affects the vibratory behavior (body‐shaking) of workers in the subterranean termite Reticulitermes flavipes. Our results reveal that the presence of reproductives or eggs triggers an increase of workers' body‐shaking, independent of their colony of origin after 24 hr. We hypothesize that vibratory communication could be used to transfer information about the presence of reproductives and eggs to the entire colony, suggesting that vibratory behaviors could serve as an important yet neglected mediator of social regulation.
In insect societies, the queen monopolizes reproduction while workers perform tasks such as brood care or foraging. Queen loss leads to ovary development and lifespan extension in workers from many ants. However, the underlying molecular mechanisms of this phenotypic plasticity remain unclear. Recent studies highlight the importance of epigenetics in regulating plastic traits in social insects. We investigated the role of histone acetylation in the regulation of worker reproduction in the ant Temnothorax rugatulus. We removed queens from their colonies to induce worker fecundity, and either fed workers with chemical inhibitors of histone acetylation (C646), deacetylation (Trichostatin A), or the solvent (DMSO) as control. We monitored worker number for six weeks after which we assessed ovary development and sequenced fat body mRNA. Workers survived better in queenless colonies and developed their ovaries after queen removal in control colonies as expected, but not in colonies treated with chemical inhibitors. Both inhibitors affected gene expression, although the inhibition of histone acetylation using C646 influenced the expression of more genes with immunity, fecundity, and longevity functionalities. Interestingly, these C646-treated workers shared many upregulated genes with infertile workers from queenright colonies. We also identified one gene with antioxidant properties commonly downregulated in infertile workers from queenright colonies and both C646 and TSA-treated workers from queenless colonies. Our results indicate that histone acetylation is involved in the molecular regulation of worker reproduction and lifespan, and thus point to an important role of histone modifications in modulating phenotypic plasticity of life history traits in social insects.
Aging is associated with diverse molecular processes such as oxidative damage, decrease in immunocompetence, or increase in epigenetic abnormalities, mutations, and inflammations. Many of these processes are linked to nutrient-sensing signalling pathways, suggesting that diet plays a critical role in the aging process. In fact, the protein content in the diet can affect both longevity and fecundity, but often in opposite directions. In many solitary organisms, protein-rich diets dramatically shorten lifespan, but increase egg production. We used the ant Temnothorax rugatulus to investigate the effect of the protein to carbohydrate ratio in the diet on the survival and fecundity of fertile workers. We fed colonies either a moderately high-carbohydrate or high-protein diet (1:2 and 2:1 respectively) and monitored worker survival and egg production over 9 weeks. The protein-rich diet did not alter the ability of workers to lay eggs, but reduced worker survival, suggesting that consuming large amounts of protein may shorten lifespan in fertile ant workers without promoting reproduction. Our study shows for the first time that a protein-rich diet reduces the overall fitness of fertile workers.
Social insects are models for phenotypic plasticity: the generation of different phenotypes from the same genotype. Ant queens and workers differ not only in their morphology and behaviour, but also in their fecundity and lifespan, which is often several times higher in queens. However, the gene regulatory mechanisms underlying these differences are not yet well understood. Since ant queens can live and reproduce for more than two decades, they need to protect their germline from the activity of transposable elements (TEs). This protection may be redundant in short-lived, often sterile workers. We have analysed the expression of two protective classes of smallRNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), in different tissues, castes, and age classes of the ant species Temnothorax rugatulus. We show that piRNAs are particularly active in the ovaries of queens. TEs are clear targets of the piRNAs in this ant species, and piRNA-specific sequence signatures in the ovaries of all queens regardless of age indicate that young and old queens have similarly active piRNA pathways. Interestingly, the reduced ovaries of the workers also showed the same level of piRNA activity. This was not only the case in young, fertile workers from queenless nests, but also in the presumably older foragers, which have almost completely regressed ovaries. These findings suggest that the germline in these ants is invariably protected by piRNA activity, irrespective of ovarian development. The brain and thorax of queens also contained piRNAs, but at lower levels, and the piRNA-specific ping-pong signatures were strongly reduced in these tissues. We also annotated and analysed miRNAs in different tissues. We confidently detected the expression of 304 miRNAs. Of these, 10 were enriched in the brain and three to the thorax, whereas 83 were specific to the ovaries. 105 miRNAs were found to be expressed in all three tissues. We also identified miRNAs whose expression potentially is related to ant caste, fecundity, and age, suggesting that caste-specific gene activity may be regulated in part by miRNAs. In contrast, our studies of piRNA activity indicate similar profiles across caste, fecundity and age groups, but strong tissue specificity with the highest piRNA mediated TE protection in the germline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.