The high intensity diode laser did not provide additional benefits to non-surgical periodontal treatment. More studies are necessary to prove the actual need of this type of laser in the periodontal clinical practice.
Within the limits of this clinical trial and considering the laser and photosensitizer protocol used, PDT failed to demonstrate additional clinical and bacteriological benefits in residual pockets treatment.
We have previously developed a method for estimating elastin content and organization in resistance arteries, where it is a minor component. The aim of the present study was to validate the method against a quantitative assay and to determine the relative importance of elastin content and organization for intrinsic elasticity of small arteries. Mesenteric third order branches (from 10-day-old, 1-and 6-month-old rats) and middle cerebral arteries (from 6-month-old rats) were pressurized. β-Values were calculated from stress-strain relationships and used as indicators of intrinsic stiffness. The same pressure-fixed arteries were used to estimate elastin content and organization in the internal elastic lamina with confocal microscopy. Collagen and elastin contents were determined by Picrosirius Red staining and radioimmunoassay for desmosine, respectively. Confocal and desmosine assays gave similar results: no difference in elastin content of mesenteric vessels from 1-and 6-month-old rats, and a significant reduction in cerebral compared to mesenteric arteries. For all parameters (elastin and collagen content, fenestrae area and internal elastic lamina thickness) the best correlation was found between β-values and fenestrae size. These data suggest that in small arteries: (1) confocal microscopy can be used as a method for the simultaneous study of changes in elastin content and organization; and (2) elastin organization might be a key determinant of intrinsic elastic properties.
Despite the apparent consensus on the existence of endothelial dysfunction in conduit and resistance arteries of spontaneously hypertensive rats (SHR), a commonly employed experimental model of hypertension, there are a number of reports showing that endothelium-dependent vasodilatory responses are similar, or even increased, in SHR compared with their normotensive counterparts. The present paper aims to discuss the rationale for these apparent discrepancies, including the effect of age, type of artery and methodological aspects. Data from the literature indicate that the age of the animal is a contributing factor and that endothelial dysfunction is likely to be a consequence of hypertension. In addition, the use of antioxidant additives, such as ascorbic acid or ethylene diaminetetraacetic acid, and differences in the level of initial arterial stretch, might also be of importance because they may modify the oxidative status of the artery and the levels of vasoactive factors released by the endothelium.
Short-term treatment with a low dose of LGF induced a large improvement in vascular structure and function and significantly reduced blood pressure in a rat model of essential hypertension. The present results could open future research to explore the vascular effects of this endogenous factor in order to determine its potential as an antifibrotic and antihypertensive agent in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.