Marfan syndrome results from mutations in an extracellular matrix glycoprotein, fibrillin. Previous studies have characterized approximately 6.9-kb of the estimated 10-kb fibrillin transcript. We have now completed the primary structure of fibrillin, elucidated the exon/intron organization of the gene and derived a physical map of the genetic locus. Pre-fibrillin consists of 2,871 amino acids which, excluding the signal peptide, are arranged into five structurally distinct regions. The largest of these regions comprises about 75% of the entire protein and consists of numerous repeated cysteine-rich sequences homologous to the peptide motifs of the epidermal growth factor (EGF) and transforming growth factor-beta binding protein (TGF-bp). Forty-three of the forty-six EGF-like repeats contain a calcium binding consensus sequence (EGF-CB) conceivably mediating protein-protein interactions. Fibrillin exhibits a few additional cysteine-rich modules that are apparently unique to this macromolecule and may represent evolutionary variants of the EGF-CB and TGF-bp motifs. Almost all of the cysteine-rich repeats are encoded by single exons; consequently, the fibrillin gene is relatively large (approximately 110-kb) and highly fragmented (65 exons). This study provides the first comprehensive analysis of the fibrillin gene and relevant information for the full characterization of Marfan syndrome mutations.
SPINK5, encoding the putative multi-domain serine protease inhibitor LEKTI, was recently identified as the defective gene in the severe autosomal recessive ichthyosiform skin condition, Netherton syndrome (NS). Using monoclonal and polyclonal antibodies, we show that LEKTI is a marker of epithelial differentiation, strongly expressed in the granular and uppermost spinous layers of the epidermis, and in differentiated layers of stratified epithelia. LEKTI expression was also demonstrated in normal differentiated human primary keratinocytes (HK) through detection of a 145 kDa full-length protein and a shorter isoform of 125 kDa. Both proteins are N-glycosylated and rapidly processed in a post-endoplasmic reticulum compartment into at least three C-terminal fragments of 42, 65 and 68 kDa, also identified in conditioned media. Processing of the 145 and 125 kDa precursors was prevented in HK by treatment with a furin inhibitor. In addition, in vitro cleavage of the recombinant 145 kDa precursor by furin generated C-terminal fragments of 65 and 68 kDa, further supporting the involvement of furin in LEKTI processing. In contrast, LEKTI precursors and proteolytic fragments were not detected in differentiated HK from NS patients. Defective expression of LEKTI in skin sections was a constant feature in NS patients, whilst an extended reactivity pattern was observed in samples from other keratinizing disorders, demonstrating that loss of LEKTI expression in the epidermis is a diagnostic feature of NS. The identification of novel processed forms of LEKTI provides the basis for future functional and structural studies of fragments with physiological relevance.
SPINK5 (serine protease inhibitor Kazal-type 5), encoding the protease inhibitor LEKTI (lympho-epithelial Kazal-type related inhibitor), is the defective gene in Netherton syndrome (NS), a severe inherited keratinizing disorder. We have recently demonstrated epidermal protease hyperactivity in Spink5(-/-) mice resulting in desmosomal protein degradation. Herein, we investigated the molecular mechanism underlying the epidermal defect in 15 patients with NS. We demonstrated that, in a majority of patients, desmoglein 1 (Dsg1) and desmocollin 1 (Dsc1) were dramatically reduced in the upper most living layers of the epidermis. These defects were associated with premature degradation of corneodesmosomes. Stratum corneum tryptic enzyme (SCTE)-like and stratum corneum chymotryptic enzyme (SCCE)-like activities were increased, suggesting that these proteases participate in the premature degradation of corneodesmosomal cadherins. SCTE and SCCE expression was extended to the cell layers where Dsg1 and Dsc1 immunostaining was reduced. In contrast, a subset of six patients with normal epidermal protease activity or residual LEKTI expression displayed apparently normal cadherin expression and less severe disease manifestations. This suggests a degree of correlation between cadherin degradation and clinical severity. This work further supports the implication of premature corneodesmosomal cadherin degradation in the pathogenesis of NS and provides evidence for additional factors playing a role in disease expression.
The ␣ 6 integrin subunit participates in the formation of both ␣ 6  1 and ␣ 6  4 laminin receptors, which have been reported to play an important role in cell adhesion and migration and in morphogenesis. In squamous epithelia, the ␣ 6  4 heterodimer is the crucial component for the assembly and stability of hemidesmosomes. These anchoring structures are ultrastructurally abnormal in patients affected with junctional epidermolysis bullosa with pyloric atresia (PA-JEB), a recessively inherited blistering disease of skin and mucosae characterized by an altered immunoreactivity with antibodies specific to integrin ␣ 6  4. In this report, we describe the first mutation in the ␣ 6 integrin gene in a PA-JEB patient presenting with generalized skin blistering, aplasia cutis, and defective expression of integrin ␣ 6  4. The mutation (791delC) is a homozygous deletion of a single base (C) leading to a frameshift and a premature termination codon that results in a complete absence of ␣ 6 polypeptide. We also describe the DNA-based prenatal exclusion of the disease in this family at risk for recurrence of PA-JEB. Our results demonstrate that, despite the widespread distribution of the ␣ 6 integrin subunit, lack of expression of the ␣ 6 integrin chain is compatible with fetal development, and results in a phenotype indistinguishable from that caused by mutations in the  4 chain, which is expressed in a more limited number of tissues. ( J. Clin. Invest. 1997. 99:2826-2831.)
Many of the mechanisms that govern the patterning of the Drosophila neuroectoderm and mesoderm are still unknown. Here we report the sequence, expression, and regulation of the homeobox gene msh, which is likely to play an important role in the early patterning events of these two tissue primordia. msh expression is first observed in late blastoderm embryos and occurs in longitudinal bands of cells that are fated to become lateral neuroectoderm. This expression is under the control of dorsoventral axis-determination genes and depends on dpp-mediated repression in the dorsal half of the embryo and on fib-(EGF-) mediated repression ventrally. The bands of msh expression define the cells that will form the lateral columns of proneural gene expression and give rise to the lateral row of SI neuroblasts. This suggests that msh may be one of the upstream regulators of the achaete-scute (AS-C) genes and may play a role that is analogous to that of the homeobox gene vnd/NK2 in the medial sector of the neuroectoderm. During neuroblast segregation, msh expression is maintained in a subset of neuroblasts, indicating that msh, like vnd/NK2, could function in both dorsoventral patterning of the neuroectoderm and neuroblast specification. The later phase of msh expression that occurs after the first wave of neuroblast segregation in defined ectodermal and mesodermal clusters of cells points to similar roles of msh in patterning and cell fate specification of the peripheral nervous system, dorsal musculature, and the fat body. A comparison of the expression patterns of the vertebrate homologs of msh, vnd/NK2, and AS-C genes reveals striking similarities in dorsoventral patterning of the Drosophila and vertebrate neuroectoderm and indicates that genetic circuitries in neural patterning are evolutionarily conserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.